-
公开(公告)号:CN103577398B
公开(公告)日:2016-05-25
申请号:CN201310487641.X
申请日:2013-10-17
Applicant: 中国科学院计算技术研究所
IPC: G06F17/28
Abstract: 本发明涉及一种基于谓词论元结构的层次机器翻译方法及系统,包括训练和翻译过程,将句子中所有的谓词论元结构有机的组织成图状结构,再将此结构作为改进层次短语机器翻译的顶层语义骨架结构,从而直接将谓词论元结构建模到层次短语机器翻译中,将语义独立的片段单独翻译并依据它们之间的结构组合成最终译文,由此得到的译文具有更好的语义相关性、语义结构和长距离调序特征,并因此降低了机器翻译生成毫无意义译文的概率。
-
公开(公告)号:CN102760121B
公开(公告)日:2014-08-06
申请号:CN201210222936.X
申请日:2012-06-28
Applicant: 中国科学院计算技术研究所
IPC: G06F17/27
Abstract: 本发明提供一种依存映射方法,该方法首先在源语言与目标语言的双语语料库的基础上,经依存映射得到目标语言的依存句法信息并建立当前的目标语言依存句法分析模型及依存句法分析器;然后基于映射依存特征实例集合和无监督特征实例集合,对目标语言依存句法模型进行训练,以得到最优的依存句法分析模型并通过该最优的依存句法分析模型来构造最终的目标依存语法分析器。其中,映射依存特征实例集合是从经依存映射后的目标语言的依存句法信息中抽取的,无监督特征实例集合是从通过当前的目标语言依存句法分析器对目标语言库进行句法分析而得到依存树中抽取的。这种依存映射方法可以最大限度地保留映射的依存信息,并且能够鲁棒的处理噪声信息。
-
公开(公告)号:CN102693309B
公开(公告)日:2014-08-06
申请号:CN201210166934.3
申请日:2012-05-25
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供了计算机辅助翻译的方法及系统,在机器翻译结果的基础上,利用机器翻译中的中间信息、用户记忆库、词典等其他方面的辅助翻译信息来修改和完善机器自动翻译的结果。其中,采用基于AC自动机的候选短语查询方法,在线性复杂度之内解决了候选短语的查询问题,大大提高了辅助翻译的效率;采用基于卡尔曼滤波的候选短语排序方法解决了不同集合的短语之间的排序问题,通过用户翻译历史记录的分析,不断优化各候选短语集合的权重,从而提高候选短语推荐的精准度。
-
公开(公告)号:CN103473223A
公开(公告)日:2013-12-25
申请号:CN201310450616.4
申请日:2013-09-25
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种基于句法树的规则抽取方法,包括:1)对于源语言成分句法树,源语言依存句法树,目标语言串以及源语言与目标语言间的词语对齐关系的四元组,在源语言依存句法树中找出并标记与源语言成分句法树中的成分短语节点相对应的依存句法树片段;2)遍历步骤1)标记好的源语言依存句法树,抽取中心-修饰片段,在遍历过程中,对于与成分短语节点相对应的依存句法树片段,将该依存句法树片段视为一个节点来抽取中心-修饰片段,得到含成分短语节点的中心-修饰片段;3)依据所抽取的含成分短语节点的中心-修饰片段,生成含成分短语的中心-修饰规则。本发明具有较强的长距离翻译调序能力和较好的短语兼容性。
-
公开(公告)号:CN102760121A
公开(公告)日:2012-10-31
申请号:CN201210222936.X
申请日:2012-06-28
Applicant: 中国科学院计算技术研究所
IPC: G06F17/27
Abstract: 本发明提供一种依存映射方法,该方法首先在源语言与目标语言的双语语料库的基础上,经依存映射得到目标语言的依存句法信息并建立当前的目标语言依存句法分析模型及依存句法分析器;然后基于映射依存特征实例集合和无监督特征实例集合,对目标语言依存句法模型进行训练,以得到最优的依存句法分析模型并通过该最优的依存句法分析模型来构造最终的目标依存语法分析器。其中,映射依存特征实例集合是从经依存映射后的目标语言的依存句法信息中抽取的,无监督特征实例集合是从通过当前的目标语言依存句法分析器对目标语言库进行句法分析而得到依存树中抽取的。这种依存映射方法可以最大限度地保留映射的依存信息,并且能够鲁棒的处理噪声信息。
-
-
-
-