-
公开(公告)号:CN102289514B
公开(公告)日:2016-03-30
申请号:CN201110263798.5
申请日:2011-09-07
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
Abstract: 本发明提供一种社会化标签自动标注的方法。该方法包括计算标签词项在文档中的频率(TF)权重,以及由协同过滤CF、一致性话题模型Corr-LDA方法所得的标签权重,并归一化;对上述权重建立线性融合权值模型,并估计线性融合参数;以及基于线性融合模型对社会标签进行自动标注。该发明同时考虑了社会标签与文档具体内容的一致性和抽象语义层的相关性,因此能够提高社会标签自动标注的准确性。
-
公开(公告)号:CN109828995B
公开(公告)日:2020-12-11
申请号:CN201811533324.6
申请日:2018-12-14
Applicant: 中国科学院计算技术研究所
IPC: G06F16/2458 , G06F16/28 , G06K9/62
Abstract: 本发明涉及一种基于视觉特征的图数据检测方法和系统,包括:获取待分析的图数据,并统计该图数据的分布特征;将该分布特征输入基于视觉特征的分类模型,得到该图数据中具有相同类别的节点,通过将类别相同的该节点划分至同一分组,得到多个分组;利用基于视觉的分析模型对该分组进行聚合分析,得到每个分组的聚类特征,根据每个分组的该聚类特征进行模式总结和异常检测处理,并将每个分组的该聚类特征、模式总结结果和异常检测结果作为该图数据的检测结果。本发明不直接对大图数据的邻接矩阵或者拉普拉斯矩阵进行分解操作,处理速度快,效率高,具有更强的及时性。
-
公开(公告)号:CN111291229A
公开(公告)日:2020-06-16
申请号:CN202010071390.7
申请日:2020-01-21
Applicant: 中国科学院计算技术研究所
IPC: G06F16/901 , G06F16/9035 , G06Q40/04
Abstract: 本发明提出一种基于稠密多部子图的检测方法及系统,包括:步骤1、根据链式特征中的信息流动,构建交易网络的多部图,根据预设的账户间信息流动阈值筛选该多部图,得到该多部图中的稠密子图;步骤2、以固定账户存在超阈值的信息流且在中间账户中保留低于阈值的权重为约束条件,生成该稠密子图中节点子集的异常值;步骤3、根据该异常值,输出该多部图中存在异常行为的节点子集作为异常行为检测结果。本发明通过具有有效性和鲁棒性和良好的可扩展性。
-
公开(公告)号:CN103150383B
公开(公告)日:2015-07-29
申请号:CN201310082990.3
申请日:2013-03-15
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种短文本数据的事件演化分析方法,包括:根据词库和当前时段输入的短文本数据构造当前时段的文档—词项矩阵并对其进行非负矩阵分解,得到文档—事件矩阵和事件—词项矩阵;根据事件—词项矩阵计算当前时段的事件和前一时段的事件之间的相似度,根据该相似度、当前时段的事件和前一时段的剩余图构造当前时段的事件关系图;当前时段的事件关系图分割为一个或多个子图;对子图进行归类得到新生成事件集和演化事件集;根据文档—事件矩阵计算每个事件关联的文档数,并根据该文档数做演化事件集的趋势分析和预测,作为下一时段非负矩阵分解的约束条件。该方法适于动态地跟踪短文本数据的事件演化过程。
-
公开(公告)号:CN103198146B
公开(公告)日:2015-05-27
申请号:CN201310136896.1
申请日:2013-04-19
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
Abstract: 本发明提供一种面向网络流式数据的事件实时过滤方法,该方法响应于加载事件规则的请求来加载事件规则,并根据所加载的事件规则对网络流式数据进行过滤。该方法采用事件触发方式去更换过滤文本所使用的事件规则,可以适应各种业务类型。而且采用多通道方式进行文档过滤,使得不同的文本数据可以共享事件规则。既可以适应不同的文本数据,又可以提高系统的处理效率。
-
公开(公告)号:CN113139098B
公开(公告)日:2023-12-12
申请号:CN202110308958.7
申请日:2021-03-23
Applicant: 中国科学院计算技术研究所
IPC: G06F16/901 , G06N3/04 , G06N3/08
Abstract: 本发明提出一种同质关系大图的摘要提取方法及系统,包括:获取待摘要提取的关系图数据作为当前图数据,且该关系图数据为同质关系大图,并将该当前图数据中每个节点均看作超点;根据该当前图数据的邻接矩阵,通过局部敏感哈希对该当前图数据中节点进行分组;从组中随机选择多个超点对,分别计算该超点对若合并后和该关系图数据之间的差距,选择差距最小的超点对进行合并,得到重构图数据;输出该重构图数据作为摘要提取结果。
-
公开(公告)号:CN109741198B
公开(公告)日:2021-03-05
申请号:CN201811434864.9
申请日:2018-11-28
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种网络信息传播影响力度量方法、系统,包括:根据社交网络中消息传播的历史传播数据,构建节点和传播源的激活对;将社交网络中的用户作为节点,将给定消息的传播数据中参与时间为0的节点作为给定消息的传播源,通过聚合函数将传播源对节点的影响力进行聚合后通过影响力边际递减函数,得到节点在传播源下被激活的概率;以历史传播数据为训练数据,以概率的对数似然最大作为目标,对所有激活对使用随机梯度下降进行参数学习,得到节点间影响力,以得到传播源集合的影响力度量。本发明提出的基于数据驱动的影响力最大化方法直接基于本发明学习得到的影响力度量,对节点的边际效应进行估计,以高效地进行影响力最大化的节点集合选择。
-
公开(公告)号:CN109753797A
公开(公告)日:2019-05-14
申请号:CN201811503421.0
申请日:2018-12-10
Applicant: 中国科学院计算技术研究所
IPC: G06F21/56
Abstract: 本发明涉及一种针对流式图的密集子图检测方法和系统,包括:持续从社交网络获取三元组,该三元组由用户、对象和时间戳组成,以该三元组作为流式图建模为行增广矩阵;用滑动窗口访问行增广矩阵,并对每个窗口内的行增广矩阵进行奇异值分解,得到奇异矩阵,获取奇异矩阵的奇异向量对,根据向量阈值对该奇异向量对进行筛选,得到候选密集块及其密度;通过对候选密集块利用已有方法进一步进行密集子块筛选;最终密集块的用户为检测的异常用户、其中的目标物为检测的异常目标。本发明根据增广矩阵和滑动窗口对流式图建模,每次只存储一个步长的数据,每次检测一个窗口的数据,性能优于每插入一条新数据都要更新密集块的流式算法。
-
公开(公告)号:CN109741198A
公开(公告)日:2019-05-10
申请号:CN201811434864.9
申请日:2018-11-28
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种网络信息传播影响力度量方法、系统,包括:根据社交网络中消息传播的历史传播数据,构建节点和传播源的激活对;将社交网络中的用户作为节点,将给定消息的传播数据中参与时间为0的节点作为给定消息的传播源,通过聚合函数将传播源对节点的影响力进行聚合后通过影响力边际递减函数,得到节点在传播源下被激活的概率;以历史传播数据为训练数据,以概率的对数似然最大作为目标,对所有激活对使用随机梯度下降进行参数学习,得到节点间影响力,以得到传播源集合的影响力度量。本发明提出的基于数据驱动的影响力最大化方法直接基于本发明学习得到的影响力度量,对节点的边际效应进行估计,以高效地进行影响力最大化的节点集合选择。
-
公开(公告)号:CN103324662B
公开(公告)日:2016-12-28
申请号:CN201310134433.1
申请日:2013-04-18
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
Abstract: 本发明提供一种社会媒体事件的动态观点演变的可视化方法,该方法首先确定所采集的社会媒体事件信息集合中信息的情感隶属度和情感分类,然后基于所述信息的情感分类,建立情感可视化图形的几何布局并基于所述信息的情感隶属度对所建立的几何布局进行着色。该方法可以直观的显示信息流中事件的情感变化,在事件的变化和发展方面可以显示更多的情感信息,能够帮助用户更好的识别事件的转折点和爆发点,预测事件的发展趋势。
-
-
-
-
-
-
-
-
-