-
公开(公告)号:CN102728162B
公开(公告)日:2014-07-16
申请号:CN201210242126.0
申请日:2012-07-12
Applicant: 中国石油大学(北京)
IPC: B01D46/42
Abstract: 本发明为一种带有旋转式喷吹管的脉冲反吹清灰装置,该装置包括多个喷吹管路;各喷吹管路底侧设有多个喷嘴,各喷嘴设置在对应过滤单元的气体引射器上方;各喷吹管路通过一脉冲反吹阀连通于同一个反吹储气罐;各喷吹管路由密封套设的内管和外管构成;喷嘴设置在外管上,内管上设有与喷嘴数量相同的喷吹孔,多个喷吹孔沿内管轴向的间距与外管上的喷嘴间距对应相同,多个喷吹孔沿内管周向按顺序呈等角度均布;内管的一端通过供气管与脉冲反吹阀连接;内管的另一端连接一步进电机。脉冲反吹清灰时,同一时刻只有一个喷吹孔及喷嘴向对应的气体引射器喷吹高压气体,可提高清灰效率和反吹强度;喷吹时气流将自动导正,不会发生喷吹气流偏斜的现象。
-
公开(公告)号:CN102998233A
公开(公告)日:2013-03-27
申请号:CN201210479392.5
申请日:2012-11-22
Applicant: 中国石油大学(北京)
Abstract: 本发明提供了一种适用于高压气体管道内颗粒物在线检测的装置及方法,所述装置包括在线检测单元,该在线检测单元包括依次串接的主采样嘴以及流量分配器;主采样嘴的前端伸入需检测的高压气体管道内,末端串接流量分配器气体进口;流量分配器设置有一个腔体,腔体分出主路及旁路两条管路,主路依次串接二次采样嘴、在线颗粒物粒径谱仪以及第一质量流量控制器,旁路串接第二质量流量控制器;主采样嘴从高压气体管道内采样后,所采气样从流量分配器气体进口经扩散进入腔体后,分别经二次采样嘴和旁路出口排出。该装置还可进一步包括离线检测单元、长期在线监测单元。本发明的装置能够实现对高压气体管道内颗粒物的长期在线检测。
-
公开(公告)号:CN102728161A
公开(公告)日:2012-10-17
申请号:CN201210241971.6
申请日:2012-07-12
Applicant: 中国石油大学(北京)
Abstract: 本发明为一种带有伸缩式喷吹管的脉冲反吹清灰装置,该装置包括多个喷吹管路;各喷吹管路底侧设有多个喷嘴,各喷嘴设置在对应过滤单元的气体引射器上方;各喷吹管路分别各自通过一对应的脉冲反吹阀连通于一反吹储气罐;各喷吹管路由密封滑设的内管和外管构成;所述喷嘴设置在外管上,所述内管末端的管壁底侧设有一个喷吹孔,所述内管的另一端通过供气管与脉冲反吹阀连接。脉冲反吹清灰时,通过控制喷吹管路中的内管相对于外管作轴向伸缩移动,保证在同一时刻,内管上的喷吹孔只与外管上的一个喷嘴对应重合,并且只由该喷嘴向对应的气体引射器喷吹高压气体,可提高清灰效率和反吹强度;喷吹时气流将自动导正,不会发生喷吹气流偏斜的现象。
-
公开(公告)号:CN102128771A
公开(公告)日:2011-07-20
申请号:CN201010596956.4
申请日:2010-12-20
Applicant: 中国石油大学(北京)
IPC: G01N15/00
Abstract: 本发明公开了一种高温气溶胶检测导管,包括:管体,管体内的贯通部用于通入待测气溶胶,管体侧壁向外侧凸出形成凸出部,凸出部顶面开设有镜片安装孔;高温镜片,装设于镜片安装孔中,且高温镜片与管体之间用耐高温密封胶密封,高温镜片为耐高温玻璃镜片,且其表面经过增透膜镀膜处理;镜帽,装设于镜片安装孔中,盖设于高温镜片外侧,镜帽上开设有开孔,外部光源发出光线通过开孔检测所述管体内部的气溶胶,本发明的高温气溶胶检测导管,可承受较高温度及一定压力的待测气溶胶,以实现对高温气溶胶进行检测,且结构简单,易操作。
-
公开(公告)号:CN114324095B
公开(公告)日:2023-10-24
申请号:CN202111667634.9
申请日:2021-12-30
Applicant: 中国石油大学(北京)
Abstract: 本发明公开了一种气体管道内颗粒杂质浓度的监测装置,包括:光源;准直系统;监测器具有用于供天然气管道内的气体流通的气体通道,气体通道具有供准直光束穿过的光通路和用于供准直光束穿过光通路后反射的光束穿过的反射光路,气体通道在反射光路和光通路处的截面大小不同;散射光收集系统用于分别收集光通路的散射光和反射光路的散射光;信号处理系统将散射光收集系统收集的光信号转换为电信号,并根据电信号的测量脉冲数目和单个脉冲的高度,计算得到被测气流中的含尘浓度和粒度分布。通过将光束至少两次经过不同截面处的气体通道,即对不同位置的气体进行检测,通过三处位置的检测从而解决因颗粒物分布不均的影响,提高检测的准确性。
-
公开(公告)号:CN107727541A
公开(公告)日:2018-02-23
申请号:CN201711043593.X
申请日:2017-10-31
Applicant: 中国石油大学(北京)
CPC classification number: G01N15/0205 , G01N15/06 , G01N33/00 , G01N2015/0693
Abstract: 本申请公开了一种管道内气溶胶监测装置及方法以及管道系统,监测装置包括:变径机构能对管道的开度进行控制;检测路设置有用于对气溶胶浓度和粒径分布气溶胶浓度和粒径分布进行测试的测量装置;采样机构的入口端与位于变径机构上游的管道连通,采样机构的出口端与检测路的入口连通;回流机构的出口端与位于变径机构下游的管道连通,回流机构的入口端与检测路的出口连通;第一检测机构,第一检测机构用于对管道内的气体的流量进行检测;第二检测机构,第二检测机构用于对检测路内的气体的流量进行检测;第一控制阀,第一控制阀用于对检测路内的气体的流量进行控制。该监测装置可动态调整变径机构的开度,实现样品气体的流速与管道内气体的流速相同,提高了测量的精确性。
-
公开(公告)号:CN105784549A
公开(公告)日:2016-07-20
申请号:CN201610216849.1
申请日:2016-04-08
Applicant: 中国石油大学(北京)
Abstract: 本发明提供一种适用于高压工况的光学传感器配置方法及装置,包括:建立随气体压力变化的光学测量体的动态参数计算模型;利用动态参数计算模型,确定高压工况下配置光学传感器所需的光学测量体的动态参数;光学测量体的动态参数包括高压工况下光学测量体的位置相对于常压下光学测量体的位置的变化量和高压工况下光学测量体处的光斑大小相对于常压下光学测量体处的光斑大小的变化量;在常压下,根据光学测量体的动态参数配置适用于高压工况的光学传感器。由于该方案通过对光学测量体随气体压力的变化进行研究,可以在常压工况下配置适用于高压工况的光学传感器,克服了目前在高压环境中调整或重建光学传感器的方法可行性差难以实现的技术问题。
-
公开(公告)号:CN102967541B
公开(公告)日:2014-12-10
申请号:CN201210479293.7
申请日:2012-11-22
Applicant: 中国石油大学(北京)
Abstract: 本发明提供了一种适用于高温气体管道内颗粒物在线检测的装置及方法,所述装置包括在线检测单元及预热吹扫单元:在线检测单元包括串接的主采样子系统、二次采样子系统、颗粒物粒径在线分析仪及第一流量计量控制子系统;二次采样子系统包括气体流量分配器和二次采样嘴;流量分配器设有一个腔体及两个气体出口而分出主路及旁路;主路依次串接二次采样嘴、颗粒物粒径在线分析仪及第一流量计量控制子系统,旁路串接第二流量计量控制子系统;预热吹扫单元并联设于主采样子系统与二次采样子系统之间的管路上,用于对整个系统的管线进行吹扫和预热。该装置还可包括离线检测单元、长期在线监测单元。该装置能实现对高温气体管道内颗粒物的长期在线检测。
-
公开(公告)号:CN102200219A
公开(公告)日:2011-09-28
申请号:CN201110095132.3
申请日:2011-04-15
Applicant: 中国石油大学(北京)
IPC: F17D1/02
Abstract: 本发明为一种天然气管道内颗粒物采样后增压回注方法,该方法是利用气体引射器对颗粒物采样分析后的天然气进行增压回注;将高压气源中的高压气体通过高压气体引入管路通入到气体引射器的工作流体入口,颗粒物采样检测后的天然气通过天然气引入管路通入到气体引射器的引射流体入口,高压气体与采样检测后的天然气在气体引射器内混合,采样检测后的天然气被增压,两股混合后的气体从气体引射器的出口喷出,通过回注管路通入到天然气管道中实现气体增压回注。气体引射器中没有可动部件,其使用时不涉及润滑及消耗其他能源的问题,将其用于天然气管道内颗粒物采样后的增压回注,可减少能源的消耗,具有结构简单、操作方便和安全可靠的特点。
-
公开(公告)号:CN112774586B
公开(公告)日:2024-07-02
申请号:CN202110018584.5
申请日:2021-01-07
Applicant: 中国石油大学(北京)
Abstract: 本发明公开一种高压气溶胶发生系统及方法,该系统包括:用于形成气溶胶的粉料单向补给装置,其连通有第一气溶胶管路;用于将气溶胶通过引入高压气体进行增压的压力变换装置,其包括:与第一气溶胶管路相连通的连接管路、多个阀门、控制系统,至少一个气溶胶单向过滤机构,气溶胶单向过滤机构设置有单向滤网,单向滤网具有相对的第一侧和第二侧,第一侧与粉料单向补给装置相连通,第二侧与增压机构相连通;粉料单向补给装置生成的气溶胶通过第一气溶胶管路流入压力变换装置中,经过单向滤网进行拦截,再通过增压机构返向增压后形成高压气溶胶。本发明能定量地在高压气体环境下形成固态气溶胶,可用于各类粉体。
-
-
-
-
-
-
-
-
-