-
公开(公告)号:CN110109015B
公开(公告)日:2020-06-26
申请号:CN201910471732.1
申请日:2019-05-31
Applicant: 中南大学
Abstract: 本发明公开了一种基于深度学习的异步电动机故障监测与诊断方法,包括以下步骤:获取异步电动机在已知工况类型时的电力负荷时间序列,其时间跨度为Num1个电力负荷周期,且每个样本时刻的电力负荷数据包括电压、电流和功率三个维度的数据;以电压、电流和功率数据分别作为RGB图像中三个图层的像素点灰度值,将每个电力负荷周期的时间序列片段转化为1张RGB图像,每个电力负荷时间序列相应得到一组特征图像时间序列;以异步电动机的特征图像时间序列和相应的工况类型,训练深度神经网络,得到故障诊断模型,从而用于对待测异步电动机进行工况分类。本发明方法的故障诊断正确率高,在节省系统开发时间的同时,也降低了从业人员的门槛。