一种用于疾病程度分类的数据决策方法及其系统

    公开(公告)号:CN111430024A

    公开(公告)日:2020-07-17

    申请号:CN202010010514.0

    申请日:2020-01-06

    Applicant: 中南大学

    Abstract: 本发明提供了一种用于疾病程度分类的数据决策方法及其系统,包括:对疾病的特征指标进行聚类分析,将特征指标划分为关联度高的特征Ihigh和关联度低的特征Ilow;将关联度高的特征Ihigh和CT图像输入编码器进行训练得到训练后的自编码器;将训练好的自编码器与softmax分类器结合得到决策分类器,由决策分类器对CT图像进行分类并将分类结果作为分期决策的输出。本发明能够将CT图像和辅助信息结合进行疾病阶段决策的输入信息,能够快速。准确的得到疾病阶段决策结果。

    一种基于集成法的前列腺癌辅助分析方法、装置及电子设备

    公开(公告)号:CN111312392A

    公开(公告)日:2020-06-19

    申请号:CN202010175933.X

    申请日:2020-03-13

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于集成法的前列腺癌辅助分析方法、装置和电子设备,包括:获取用户的至少一个特征数据集;根据至少一个特征数据集,生成至少一个特征向量;将特征向量作为预先训练的第一支持向量机模型的输入向量,根据输出值判断用户的前列腺癌是良性或恶性;若判断所述用户的前列腺癌为恶性,则将特征向量分别作为预先训练的各模型的输入向量,分别得到各模型的输出向量;将各输出向量集成一个向量,作为预先训练的多元线性回归模型的输入向量,根据多元线性回归模型的输出值判断用户的前列腺癌所处的分期。该前列腺癌辅助分析方法采用经典机器学习方法,并使用集成学习方法来降低单一模型出错的风险。

    一种疾病概率决策方法及其系统

    公开(公告)号:CN111081379A

    公开(公告)日:2020-04-28

    申请号:CN201911213020.6

    申请日:2019-12-02

    Applicant: 中南大学

    Abstract: 本发明提供了一种疾病概率决策方法及其系统,包括:获取测试生理指标集,训练测试生理指标集得到测试生理指标的潜在信息,获取当前生理指标集,训练测试生理指标集得到当前生理指标的潜在信息;使用softmax分类器,基于测试生理指标的潜在信息以及当前生理指标的潜在信息进行建模得到疾病概率模型;将当前生理指标输入疾病概率模型得到疾病概率。本发明能够通过实时采集的生理指标数据,实时得到慢性病的概率,为医生的决策提供辅助依据。

    一种医疗数据传输方法及设备

    公开(公告)号:CN110491456A

    公开(公告)日:2019-11-22

    申请号:CN201910797213.4

    申请日:2019-08-27

    Applicant: 中南大学

    Abstract: 本发明公开了一种医疗数据传输方法及设备,通过获取用户输入的医疗诊断数据;解析所述医疗诊断数据,获取其中的个人信息及诊断结果,根据所述诊断结果对所述医疗诊断数据进行归类,根据归类结果获取所述医疗诊断数据中的关键数据项,将所述关键数据项与所述个人信息相关联;获取用户输入的提取指令;根据所述提取指令中的所述个人信息及目标终端,将与所述个人信息相关联的所述关键数据项传输给所述目标终端。通过应用本申请的技术方案,根据医生的诊断情况对病人数据进行分类,使医院在完成一份医疗报告之后不用将全部资料都上传到网络中,病人在接收医疗报告数据时也不会因为数据量过大,而对接收环境、接收网络、接收终端提出较高的要求。

Patent Agency Ranking