基于深度学习的大规模MIMO下行预编码方法

    公开(公告)号:CN111865378A

    公开(公告)日:2020-10-30

    申请号:CN202010466502.9

    申请日:2020-05-28

    Applicant: 东南大学

    Abstract: 本发明公开了基于深度学习的大规模MIMO下行预编码方法,本发明中基站利用各用户终端的瞬时和统计信道信息,依据所有用户的遍历可达速率或其逼近的效用函数最大化准则,通过通用框架或低复杂度框架,计算与每一个用户终端相应的预编码向量进行下行预编码传输。该框架基于预编码向量最优解的结构:给定拉格朗日乘子,预编码向量的方向和功率可以分别表示为最大广义特征向量形式和闭式。通用框架通过深度神经网络计算最优拉格朗日乘子,进而通过最优解结构计算预编码向量;低复杂度框架将预编码问题分解为瞬时和统计两个子问题分别计算再组合。本发明能够使下行预编码达到近乎最佳的可达和速率性能,并具有较低的计算复杂度。

Patent Agency Ranking