一种基于多核学习判别分析的舰船辐射信号识别方法

    公开(公告)号:CN104156628A

    公开(公告)日:2014-11-19

    申请号:CN201410437529.X

    申请日:2014-08-29

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于多核学习判别分析的舰船辐射信号识别方法,对舰船辐射信号样本依次进行预处理、听觉模型特征提取、维数约简、分类器分类判决。其中在维数约简阶段,使用了基于多核学习判别分析的方法,利用交替优化,分别对核映射系数和线性多核组合系数,在用图嵌入形式表示的核判别分析优化目标下,进行优化运算。与现有方法相比,本发明的方法在舰船辐射信号的识别方面,能够有效地提升系统的识别性能。

    一种基于说话人惩罚的独立于说话人语音情感识别方法

    公开(公告)号:CN103854645A

    公开(公告)日:2014-06-11

    申请号:CN201410078383.4

    申请日:2014-03-05

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于说话人惩罚的独立于说话人语音情感识别方法,对语音信号样本依次进行预处理、语音情感原始特征提取、维数约简、分类器分类判决。其中在维数约简阶段,使用了基于说话人惩罚的图嵌入学习方法,利用说话人标签信息,分别针对属于同一类情感类别但说话人不同,以及属于同一说话人但分属于不同情感类别的语音信号样本对,在图嵌入理论的基础上利用已有理论,进行组合优化运算。与现有方法相比,本发明的方法在独立于说话人的语音情感识别中,能够有效地提升系统的识别性能。

    一种基于伪说话人聚类的语音情感特征规整化方法

    公开(公告)号:CN103531198A

    公开(公告)日:2014-01-22

    申请号:CN201310534319.8

    申请日:2013-11-01

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于伪说话人聚类的语音情感特征规整化方法,适合应用于非特定说话人情感识别。本发明首先提取出能够反映说话人信息的特征空间;接着在此特征空间内进行模糊聚类,自动获得情感语料中的说话人的身份信息,据此信息进行“伪说话人”分组,每一条样本按照其相似程度划分到不同的伪说话人分组中;而后根据每条样本的伪说话人组别信息,进行情感特征的规整化;最终在规整化后的数据中加入相应组别的模糊隶属度信息。通过上述处理过程,使得情感特征空间中的样本分布更加清晰有效,降低了大量说话人带来的特征差异,增强了说话人鲁棒性。

Patent Agency Ranking