-
公开(公告)号:CN216816737U
公开(公告)日:2022-06-24
申请号:CN202122781160.2
申请日:2021-11-15
Applicant: 国网上海市电力公司 , 华东电力试验研究院有限公司 , 上海交通大学
Abstract: 本实用新型涉及一种特高频局部放电传感器性能测试夹具及装置,所述夹具包括固定环、法兰盘、夹持组件和角度调节组件,所述的法兰盘包括法兰盘面和安装环,所述的安装环和法兰盘面同轴安装,所述的法兰盘面周侧设有外凸的凸缘,对应的所述的固定环内圈底部设有与所述的凸缘适配的凹槽,所述的凸缘卡入所述的凹槽中旋转设置,所述的夹持组件设置四组并沿所述的安装环环面均匀分布将所述的传感器夹持固定在所述的法兰盘面中心位置,所述的角度调节组件设置在法兰盘和固定环上,所述的角度调节组件用于调整法兰盘相对固定环的旋转角度并固定所述的法兰盘的位置。与现有技术相比,本实用新型能够精确调节传感器的位置和角度,保证测量结果的一致性。
-
公开(公告)号:CN201662583U
公开(公告)日:2010-12-01
申请号:CN200920316069.X
申请日:2009-11-27
IPC: G01R1/28
Abstract: 一种电力系统技术领域的用于检测组合式气体绝缘开关局部放电的超高频脉冲发生器,包括:脉冲信号源、直流电源、开关三极管、第一电容、第二电容、第一电阻、第二电阻和第三电阻,脉冲信号源通过第二电容连至开关三极管的基极,开关三极管的发射极接地,第二电阻连接开关三极管的基极和发射极两端,直流电源通过第一电阻连至开关三极管的集电极,第一电容和第三电阻串联,第一电容的另一端连接开关三极管的集电极,第三电阻的另一端接地。本发生器可产生上升时间小于500ps的超高频脉冲,并且具有放电稳定、重复性好的特点,其结构简单,避免了高偏压,制作方便,可适用于超高频局部放电检测法的灵敏度标定。
-
公开(公告)号:CN110334948A
公开(公告)日:2019-10-15
申请号:CN201910602681.1
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334865A
公开(公告)日:2019-10-15
申请号:CN201910602682.6
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN110008964A
公开(公告)日:2019-07-12
申请号:CN201910241551.X
申请日:2019-03-28
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC: G06K9/46
Abstract: 本发明公开了一种高效的异源图像的角点特征提取与描述方法,对于特征相似度较低的异源图像,先采用FAST方法提取图像中的结构性特征较为显著的角点,再采用PIIFD特征描述符考虑异源图像的梯度翻转效应,对角点特征进行统一的描述。本发明技术解决方案简单,鲁棒性高,实用性强,不易受图像品质的影响,能克服异源图像特征差异较大、特征较为模糊、图像噪声干扰较大等问题,可以很好地解决目前主要特征提取方法在处理异源图像时特征提取准确率低、特征显著性低、计算复杂度高、可靠性差的问题。
-
公开(公告)号:CN110334865B
公开(公告)日:2023-04-18
申请号:CN201910602682.6
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC: G06Q10/04 , G06Q10/0635 , G06Q10/20 , G06Q50/06 , G06F18/243 , G06F18/2415 , G06F18/214 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/084
Abstract: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN112307851A
公开(公告)日:2021-02-02
申请号:CN201910710454.0
申请日:2019-08-02
Applicant: 上海交通大学烟台信息技术研究院 , 上海交通大学
Abstract: 本发明公开了一种电力铁塔上鸟巢的识别方法,其包括训练步骤和识别步骤,训练步骤包括:S100:采集电力铁塔二维案例图像;S200:构建卷积神经网络并对其进行训练,以使卷积神经网络进行数据简化处理;S300:构建采用多个限制玻尔兹曼机堆叠形成的深度信念网络,将二维数据降维到含有电力铁塔图像特征的一维数据输入深度信念网络,采用一维数据对深度信念网络进行训练,以使深度信念网络输出识别结果;识别步骤包括:D100:将待识别的电力铁塔二维图像输入经过训练的卷积神经网络,卷积神经网络输出经过数据简化的二维数据;D200:将二维数据降维至一维数据输入经过训练的深度信念网络;D300:深度信念网络输出识别结果。
-
公开(公告)号:CN110334948B
公开(公告)日:2023-04-07
申请号:CN201910602681.1
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC: G06Q10/0635 , G06Q10/0639 , G06Q50/06 , G06F18/214 , G01R31/12
Abstract: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334866B
公开(公告)日:2022-11-11
申请号:CN201910602683.0
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
公开(公告)号:CN110334866A
公开(公告)日:2019-10-15
申请号:CN201910602683.0
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
-
-
-
-
-
-
-
-