一种基于多重流形的手写数据分类方法及系统

    公开(公告)号:CN108388869B

    公开(公告)日:2021-11-05

    申请号:CN201810166510.4

    申请日:2018-02-28

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于多重流形的手写数据分类方法及系统,该方法包括:获取高维数据集;分别计算高维数据集中任意两个数据点之间的相似度,获取高维数据集对应的相似矩阵;根据相似矩阵,构建高维数据集对应的目标拉普拉斯矩阵;将目标拉普拉斯矩阵的前第一预设数量的特征向量聚入到第二预设数量的类别内,获取高维数据集的分类结果;本发明通过获取高维数据集对应的相似矩阵,获得高维数据的底层低维映射流形结构,可以构建同时考虑高维数据的高维结构和底层低维映射结构的拉普拉斯矩阵,利用目标拉普拉斯矩阵对拉普拉斯矩阵进行特征值分解,从而对得到的特征值进行聚类,得到高维数据集的聚类结果,尽可能多地保留了高维数据的原始结构。

    一种图像检索方法、系统及装置

    公开(公告)号:CN108491528B

    公开(公告)日:2021-09-21

    申请号:CN201810264981.9

    申请日:2018-03-28

    Applicant: 苏州大学

    Abstract: 本申请公开了一种图像检索方法、系统及装置,包括待检索图像经由整体检索模型进行分类判断,根据整体模型的分类判断结果为待检索图像选取相应的局部检索模型,待检索图像由相应的局部检索模型进行特征分析并进行哈希编码映射,得到待检索图像的哈希编码,同时,在与局部检索模型对应的目标哈希编码库中检索与待检索图像的哈希编码相似的哈希编码,最后从中选取满足相似条件的相似哈希编码集,并在图像数据库中查找到与相似哈希编码集对应的相似图像集,完成检索;本申请预先建立进行分类判断的整体检索模型,再利用整体检索模型生成局部检索模型,提高对图像的检索准确度,并建立与局部检索模型对应的目标哈希编码库,进一步的提高检索准确度。

    一种单样本人脸识别方法、系统、设备及可读存储介质

    公开(公告)号:CN107886090B

    公开(公告)日:2021-07-30

    申请号:CN201711352665.9

    申请日:2017-12-15

    Applicant: 苏州大学

    Abstract: 本申请公开了单样本人脸识别方法、系统、设备及可读存储介质,其中,该方法包括:获取已标注的人脸图像数据,得到参考数据;通过对所述参考数据进行多尺度支持向量变换,得到所述参考数据相应的多尺度高维投影;提取所述多尺度高维投影的特征,得到所述参考数据相应的多尺度高维特征序列;利用所述多尺度高维特征序列,分别对所述参考数据和待测试数据进行反投影,得到所述参考数据和所述待测试数据相应的虚拟图像;根据所述参考数据对应的虚拟图像,计算所述待测试数据相应的虚拟图像的分类准确率,以完成对单样本的人脸识别。可见,本发明提供的单样本人脸识别方法将特征提取和样本扩充进行有机的结合,从而提高单样本人脸识别的准确率。

    一种基于多阶近邻预测的推荐系统及方法

    公开(公告)号:CN112115359A

    公开(公告)日:2020-12-22

    申请号:CN202010974301.X

    申请日:2020-09-16

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于多阶近邻预测的推荐系统及方法,该系统包括:用户评分矩阵建立模块,用于根据用户集合和物品集合建立用户评分矩阵;相似度计算模块,用于计算任意两个用户之间的相似度;迭代近邻查找模块,用于根据相似度计算结果为目标用户选择N个近邻用户作为其一阶近邻,再选择N个一阶近邻的一阶近邻作为其二阶近邻,并依次迭代,直至找出目标用户的k阶近邻集,其中,N和k均为正整数;预测及推荐模块,用于根据每一次迭代查找的近邻集重新预测目标用户对物品的评分,并为目标用户进行物品推荐。本发明基于多阶近邻预测的推荐系统及方法采用迭代查找的思想,使得该推荐系统和方法的预测评分更准确,有效性更高。

    基于部分特征融合卷积神经网络实时目标计数系统及方法

    公开(公告)号:CN111951260A

    公开(公告)日:2020-11-17

    申请号:CN202010850481.0

    申请日:2020-08-21

    Applicant: 苏州大学

    Abstract: 本发明涉及一种基于部分特征融合卷积神经网络实时目标计数系统及方法,包括:数据预处理模块,使用图像中已经标注好的目标位置信息,利用高斯滤波器生成目标图像的密度图,并将所有图像归一化;网络训练模块,建立部分特征融合卷积神经网络模型,使用处理好的图像及生成的密度图对所述部分特征融合卷积神经网络模型进行训练;目标数量预处理模块,根据给定的图像,使用训练好的网络模型对图像中的目标数量进行预测。本发明有利于降低网络的参数量和计算量,保证运行速度。

    一种人类上皮细胞染色分类装置、设备及存储介质

    公开(公告)号:CN111680575A

    公开(公告)日:2020-09-18

    申请号:CN202010425239.9

    申请日:2020-05-19

    Applicant: 苏州大学

    Abstract: 本申请公开了一种人类上皮细胞染色分类装置,包括:训练模块,用于预先利用多尺度卷积神经网络和样本人类上皮细胞染色图像数据训练出目标分类模型;获取模块,用于获取待测人类上皮细胞染色图像数据;分类模块,用于将待测人类上皮细胞染色图像数据输入至目标分类模型中,输出对应的分类结果。可见,由于本装置中所使用的多尺度卷积神经网络充分利用不同尺度的网络信息,使得前后特征信息能够进一步的融合,从而提高模型的效率,并且能够充分利用网络训练中的有效信息,从而提高人类上皮细胞染色分类结果的准确度。本申请还公开了一种人类上皮细胞染色分类设备及计算机可读存储介质,均具有上述有益效果。

    一种人脸识别方法及装置
    178.
    发明授权

    公开(公告)号:CN107480628B

    公开(公告)日:2020-08-25

    申请号:CN201710680306.X

    申请日:2017-08-10

    Applicant: 苏州大学

    Abstract: 本发明实施例公开了一种人脸识别方法及装置。其中,方法包括对获取到的待识别图像与包含多个用户的单幅样本图像的样本训练库进行图像分割,将待识别图像与各样本图像分割为相同预设块数、位置一一对应、不重叠的多幅子图像;计算待识别图像的各子图像与各样本图像对应的子图像的相异性,将各个子图像的相异性值进行平均值融合计算,以得到待识别图像与各所述样本图像的相异性值;根据各相异性值,利用最近邻分类器为待识别图像在样本训练库中匹配对应的用户。有效避免了传统的利用相似性识别由于训练样本少造成的准确率较低的现象;有利于提升单样本训练的人脸图像识别的准确性,从而提高人脸识别的准确率,以提高身份鉴别的安全性。

    基于递归极深网络的超分辨图像重构方法及系统

    公开(公告)号:CN111145096A

    公开(公告)日:2020-05-12

    申请号:CN201911370222.1

    申请日:2019-12-26

    Applicant: 苏州大学

    Abstract: 本发明涉及一种基于递归极深网络的超分辨图像重构方法及系统,包括设定训练集,对所述训练集进行数据增强;利用所述训练集对已经搭建好的神经网络模型进行训练;利用训练完成的神经网络模型在测试图像上进行重建。本发明使得卷积网络的前一层可以使用后一层的有用信息,达到使用高级信息来完善低级信息的目的。

    一种基于两阶段卷积神经网络的细胞图像分类方法

    公开(公告)号:CN110852288A

    公开(公告)日:2020-02-28

    申请号:CN201911122532.1

    申请日:2019-11-15

    Applicant: 苏州大学

    Abstract: 本申请公开了一种基于两阶段卷积神经网络的细胞图像分类方法、装置、设备及可读存储介质,能够基于细胞图像分类模型实现对上皮细胞染色图像的分类,该细胞分类模型针对各类图像特征鉴别难度的不同分别设置了粗分类单元和精分类单元,在实际分类预测过程中,首先根据粗分类结果判断图像是否为易混淆类,对于非易混淆类的图像直接输出其粗分类结果,对于易混淆类的图像,则结合粗分类单元和精分类单元各自提取到的特征图进行精细化分类。因此,该模型在保证分类效率的同时,提升了分类的可靠性,而且精分类单元中的卷积神经网络与易混淆类一一对应,进一步保证了精分类的可靠性。

Patent Agency Ranking