一种双模复合红外电控液晶微透镜阵列芯片

    公开(公告)号:CN104298047B

    公开(公告)日:2017-02-15

    申请号:CN201410577611.2

    申请日:2014-10-24

    Abstract: 本发明公开了一种双模复合红外电控液晶微透镜阵列芯片,包括:芯片壳体、电控散光液晶微透镜阵列、以及电控聚光液晶微透镜阵列,电控散光液晶微透镜阵列与电控聚光液晶微透镜阵列级联耦合构成双模复合电调架构,电控散光液晶微透镜阵列与电控聚光液晶微透镜阵列均设置在芯片壳体内部,二者彼此紧密贴合并与芯片壳体连接,且二者的光轴重合,电控散光液晶微透镜阵列的光入射面和电控聚光液晶微透镜阵列的光出射面分别通过芯片壳体顶面和底面的开口裸露出来。本发明的双模复合红外电控液晶微透镜阵列芯片结构紧凑,可用于形成多种光束形态,具有较常规电控液晶微透镜更好的光场适应性,控制精度高,易与常规红外光学光电机械结构耦合。

    一种石墨烯基双模混合集成电控液晶微透镜阵列芯片

    公开(公告)号:CN104298022B

    公开(公告)日:2017-02-01

    申请号:CN201410576693.9

    申请日:2014-10-24

    Abstract: 本发明公开了一种石墨烯基双模混合集成电控液晶微透镜阵列,包括阵列化控光架构、第一驱控信号输入端口和第二驱控信号输入端口,阵列化控光架构的上下层之间顺次设置有第一基片、微圆孔形图案化石墨烯电极、第一液晶定向层、第一液晶层、第二液晶定向层、石墨烯共地电极、第二基片、第三液晶定向层、第二液晶层、第四液晶定向层、微圆环孔形图案化石墨烯电极、第三基片,微圆孔形图案化石墨烯电极、石墨烯共地电极和微圆环孔形图案化石墨烯电极分别固定在第一至第三基片上,微圆孔形图案化石墨烯电极和微圆环孔形图案化石墨烯电极分别包括m×n个微圆孔和微圆环孔。本发明结构紧凑,光束变换效能高,易与常规光学光电机械结构耦合,环境适应性好。

    基于双路电压信号驱控的面阵电控液晶光发散微柱镜芯片

    公开(公告)号:CN104317078B

    公开(公告)日:2017-01-25

    申请号:CN201410576827.7

    申请日:2014-10-24

    Abstract: 本发明公开了一种基于双路电压信号驱控的面阵电控液晶光发散微柱镜芯片,包括:液晶散光微柱镜阵列、第一驱控信号输入端口、以及第二驱控信号输入端口,液晶散光微柱镜阵列为m×n元,其中m、n均为大于的整数,液晶散光微柱镜阵列采用液晶夹层结构,且上下层之间顺次设置有第一基片、顶层面电极板、电极间绝缘层、顶层图案化电极板、第一液晶定向层、液晶层、第二液晶定向层、网孔状共地电极板、第二基片,顶层面电极板和网孔状共地电极板分别制作在第一基片和第二基片上,顶层图案化电极板由m×n个微长方孔有序排布构成,网孔状共地电极板由多个孔均匀排布构成。本发明结构紧凑,可高效进行束发散投送与精细调变,控制灵活,环境适应性好。

    一种电控液晶菲涅耳红外聚束微透镜芯片

    公开(公告)号:CN104317117B

    公开(公告)日:2017-01-04

    申请号:CN201410576830.9

    申请日:2014-10-24

    Abstract: 本发明公开了一种电控液晶菲涅耳红外聚束微透镜芯片,包括:第一驱控信号输入端口、第二驱控信号输入端口、以及菲涅耳液晶聚束微透镜,菲涅耳红外聚束微透镜有m级衍射相位环,菲涅耳液晶聚束微透镜采用液晶夹层结构,且上下层之间顺次设置有红外增透膜系、第一基片、顶面图案化电极、第一电隔离层、第一液晶定向层、液晶层、第二液晶定向层、第二电隔离层、顶层图案化电极、电极间电绝缘层、公共电极、以及第二基片,顶面图案化电极和公共电极分别制作在第一基片和第二基片上。本发明具有聚束效能高、聚束光斑的轴向位形、点扩散函数及波前等可电控调变、易与常规红外光学光电机械结构耦合、环境适应性好等特点。

    防误码扩散的JPEG-LS图像无损/近无损压缩算法硬件实现方法

    公开(公告)号:CN105828070B

    公开(公告)日:2016-12-28

    申请号:CN201610165800.8

    申请日:2016-03-23

    Abstract: 本发明公开了一种防误码扩散的图像无损/近无损压缩方法:采用并行预测方式,将分块的图像通过两路并行得到预测结果,在每个预测环节,像素之间间隔一个像素时钟周期,使得由参数索引、预测修正、残差计算、参数更新反馈环路可使用流水线设计;在近无损压缩模式下,每个像素有足够的时间进行像素重建,在当前像素进行上下文建模前能刚好得到上一个像素对应的像素重建值;通过引入分块压缩与检纠错编码相结合的方法,防止了误码的大面积扩散,提高了抗信道误码性能,同时子块大小可调,检纠错编码方式可调;进行分区域近无损压缩,可根据实际应用需求,对图像的不同区域采用不同的近无损参数Near进行压缩,可进一步提高图像的整体压缩比。

    一种基于FPGA的实时星点质心定位方法及装置

    公开(公告)号:CN105761288A

    公开(公告)日:2016-07-13

    申请号:CN201610072227.6

    申请日:2016-02-02

    Inventor: 桑红石 高英华

    Abstract: 本发明公开了一种基于FPGA的实时星点质心定位的方法,包含以下步骤:对当前扫描输入的星图像素计算阈值,同时对像素形成M通道数据进行阈值分割,将阈值分割的M路结果输出到M*M的模板,利用模板对像素进行星点质心判断,判断模板内中心像素所在的行像素灰度和是否为各行灰度像素和的最大值,列像素灰度和是否为各列像素灰度和的最大值,以此粗定位星点质心所在位置是否为中心像素所在坐标位置,对属于本星点的模板内像素进行质心计算,细定位星点质心坐标位置,最后将质心特征和坐标缓存输出。该方法充分利用硬件运行并行性的特点对星点实现直接的判断和提取,硬件设计采用流水线结构可以实时对像素进行处理,存储资源耗费少,质心定位快速准确。

    基于超材料的肖特基型远红外多谱信号探测器和制备方法

    公开(公告)号:CN104241433B

    公开(公告)日:2016-05-25

    申请号:CN201410455227.5

    申请日:2014-09-09

    CPC classification number: Y02P70/521

    Abstract: 本发明公开了一种基于超材料的肖特基型远红外多谱信号探测器,包括自下而上依次设置的衬底层、N型砷化镓层、二氧化硅层与超材料层、欧姆电极和肖特基电极;其中超材料层为具有周期性微纳米结构的金属开环共振单元阵列,金属开环共振单元阵列包含了多种图形及其特征尺寸参数,每个图形对于特定电磁波具有完全吸收特性,通过改变金属开环共振单元的结构和尺寸参数可以调控对应的电磁波吸收频段,通过改变N型砷化镓的耗尽层宽度可以调控超材料层中金属开环共振单元阵列的电磁波吸收强度。本发明具有多谱、高灵敏度和高速特性,通过选择不同金属开环共振单元结构并进行单片集成可以将探测器工作于远红外的多个波段。

    基于超材料的太赫兹单谱信号探测器及其制备方法

    公开(公告)号:CN104241434B

    公开(公告)日:2016-04-13

    申请号:CN201410455234.5

    申请日:2014-09-09

    CPC classification number: Y02P70/521

    Abstract: 本发明公开了一种基于超材料的太赫兹单谱信号探测器,包括自下而上依次设置的衬底层、N型砷化镓层、二氧化硅层与超材料层、欧姆电极和肖特基电极;其中超材料层为具有周期性微纳米结构的金属开环共振单元阵列,金属开环共振单元阵列包含了一种图形及其特征尺寸参数,该图形对于太赫兹电磁波具有完全吸收特性,通过改变金属开环共振单元的结构和尺寸参数可以调控对应的电磁波吸收频段,通过改变N型砷化镓的耗尽层宽度可以调控超材料层中金属开环共振单元阵列的电磁波吸收强度。本发明超材料层中金属开环共振单元的波长选择性和完美吸收特性,具有高灵敏度和高速特性,通过选择特定金属开环共振单元结构可以将探测器工作于太赫兹的一个特定波段。

    一种色散补偿方法及装置
    159.
    发明授权

    公开(公告)号:CN102684793B

    公开(公告)日:2015-12-09

    申请号:CN201110054415.3

    申请日:2011-03-08

    Abstract: 本发明公开了一种色散补偿方法,包括:接收来自光网络单元的突发数据,所述突发数据包括前导码以及信息数据;根据突发数据中的前导码确定对信息数据进行均衡计算的权值组;使用所述权值组对所述信息数据进行均衡计算,并根据均衡计算结果得到色散补偿输出。本发明实施例还提供了一种色散补偿装置,该方法及装置能够降低实现成本。

    一种红外立体成像探测芯片

    公开(公告)号:CN103512666B

    公开(公告)日:2015-10-21

    申请号:CN201310408366.8

    申请日:2013-09-09

    Abstract: 本发明公开了一种红外立体成像探测芯片,包括陶瓷外壳、金属支撑与散热板、驱控和红外图像预处理模块、面阵非制冷红外探测器、以及面阵红外折射微透镜,驱控和红外图像预处理模块、面阵非制冷红外探测器、以及面阵红外折射微透镜同轴顺序设置于陶瓷外壳内,陶瓷外壳后部设置于金属支撑与散热板顶部,驱控和红外图像预处理模块设置于陶瓷外壳后部与金属支撑与散热板连接处,面阵非制冷红外探测器设置于驱控和红外图像预处理模块顶部,面阵红外折射微透镜设置于面阵非制冷红外探测器顶部,并通过陶瓷外壳面部开孔将其光入射面裸露出来。本发明具有通过单光敏芯片并行探测目标的立体图像信息、易与常规红外光学系统兼容、目标和环境适应性好的特点。

Patent Agency Ranking