时序数据的预测方法及装置

    公开(公告)号:CN114756720B

    公开(公告)日:2022-10-04

    申请号:CN202210662745.9

    申请日:2022-06-13

    Abstract: 本公开披露了一种时序数据的预测方法和装置。所述方法包括:获取图数据,所述图数据包括目标节点的时序数据以及所述目标节点的邻居节点的时序数据;将所述目标节点的时序数据输入时序编码器,得到所述目标节点的节点特征;将所述目标节点的时序数据和所述邻居节点的时序数据输入空间编码器,得到所述邻居节点的节点特征,所述邻居节点的节点特征为所述邻居节点的时序数据中的与所述目标节点的时序数据相关的特征;将所述目标节点的节点特征和所述邻居节点的节点特征融合,得到融合后的特征;根据所述融合后的特征,确定所述目标节点的时序数据的预测结果。

    一种增强隐私保护的联邦学习方法和系统

    公开(公告)号:CN112632620B

    公开(公告)日:2022-08-26

    申请号:CN202011621141.7

    申请日:2020-12-30

    Inventor: 李龙飞 周俊

    Abstract: 本说明书涉及机器学习领域,特别涉及一种增强隐私保护的联邦学习方法和系统。所述方法由多个参与方中的任一训练成员实现,其中,所述参与方包括服务器及多个训练成员,该方法包括:获取隐私样本;获取一个或多个与所述隐私样本同类型的扰动样本;基于所述隐私样本与一个或多个扰动样本生成加密样本;基于所述加密样本,与其他参与方进行联邦学习以对待训练模型进行联合训练。

    一种网络模型训练、推送内容确定方法及装置

    公开(公告)号:CN114781625A

    公开(公告)日:2022-07-22

    申请号:CN202210659314.7

    申请日:2022-06-13

    Abstract: 本说明书实施例提供了一种网络模型训练、推送内容确定方法及装置。网络模型包括自注意力网络和第一神经网络,该网络模型用于确定用户针对待推送内容的偏好评分,计算设备可以基于该偏好评分确定针对用户的推送内容。在训练网络模型时,可以基于用户的历史点击行为的时间戳,在预设维度空间中进行时间映射,得到时间编码;基于历史点击行为包含的点击内容和对应的时间编码,生成用户的时间序列特征;利用自注意力网络,基于时间序列特征和待推送内容,确定用于表征用户的历史点击行为与待推送内容之间关系的第一输出结果;利用第一神经网络,基于第一输出结果和用户的第一特征,确定用户针对待推送内容的偏好评分,基于偏好评分更新网络模型。

    一种基于树模型的预测方法和装置

    公开(公告)号:CN110751330B

    公开(公告)日:2022-07-22

    申请号:CN201910995202.7

    申请日:2019-10-18

    Inventor: 陈超超 王力 周俊

    Abstract: 本说明书实施例提供了一种基于树模型的预测方法和装置,其中,所述方法由树模型的模型拥有方执行、针对数据拥有方中的第一对象进行预测,所述方法包括:对n个节点确定随机排列顺序;依据随机排列顺序依次对n个节点中的每个节点执行:将该节点对应的第一特征发送给数据拥有方;与数据拥有方共同执行比较计算,以获取该节点的特征分裂值与第一对象的第一特征的特征值的比较结果,所述比较计算使得对于模型拥有方隐藏第一对象的第一特征的特征值,对于数据拥有方隐藏该节点的特征分裂值;基于n个节点中每个节点的所述比较结果、n个节点中每个节点在所述树模型中的位置,通过所述树模型输出对所述第一对象的预测结果。

    基于大规模整数规划的资源分配方法和系统

    公开(公告)号:CN114638549A

    公开(公告)日:2022-06-17

    申请号:CN202210500282.6

    申请日:2022-05-10

    Abstract: 本公开提出了一种基于大规模整数规划的资源分配方法和系统。该方法包括:接收资源分配任务并将该资源分配任务转换成大规模整数规划问题;设定该资源分配任务的总目标;基于该总目标圈定待分配客户群;将该大规模整数规划问题随机均匀分割成多个子问题;对分割后的子问题进行求解以获得每个子问题的资源预分配模式;基于每个子问题的资源预分配模式进行资源预分配;对该资源预分配进行评估以确定该总目标的完成度,并且如果该总目标的完成度符合预期,则根据该资源预分配模式向该待分配客户群分配资源。

    图数据的增广、图神经网络训练方法、装置以及设备

    公开(公告)号:CN114372566A

    公开(公告)日:2022-04-19

    申请号:CN202210277845.X

    申请日:2022-03-21

    Abstract: 本说明书实施例公开了图数据的增广、图神经网络训练方法、装置以及设备。增广方案包括:所述图数据包括多个节点以及节点之间的边;确定所述图数据中的指定节点以及所述指定节点的邻居节点;在所述邻居节点中选择部分节点,作为待增广节点;在所述图数据中的所述待增广节点对应的路径上,选择与所述待增广节点的距离小于预设阈值的节点,作为目标节点;将所述待增广节点与所述指定节点之间的边删除,并在所述目标节点与所述指定节点之间生成新的边,以生成增广图数据。

    神经网络模型训练方法、装置及系统

    公开(公告)号:CN112052942B

    公开(公告)日:2022-04-12

    申请号:CN202010986099.2

    申请日:2020-09-18

    Abstract: 本说明书实施例提供神经网络模型训练方法及装置。神经网络模型包括位于各个第一成员设备的第一神经网络子模型。各个第一成员设备使用私有数据进行模型预测得到预测标签数据并确定第一神经网络子模型的模型更新信息,将第一神经网络子模型的模型更新信息和本地样本分布信息提供给第二成员设备。第二成员设备根据各个第一成员设备的第一神经网络子模型的模型更新信息进行神经网络模型重构,根据各个第一成员设备的本地样本分布信息确定整体样本概率分布,并将重构后的神经网络模型和整体样本概率分布分发给各个第一成员设备。各个第一成员设备根据本地样本概率分布、重构后的神经网络模型以及整体样本概率分布更新第一神经网络子模型。

    模型压缩方法、系统和计算设备

    公开(公告)号:CN112508194B

    公开(公告)日:2022-03-18

    申请号:CN202110142167.1

    申请日:2021-02-02

    Abstract: 本公开提供了模型压缩方法、系统和计算设备。该方法包括:通过至少一个计算设备:加载目标模型,所述目标模型包括多个特征嵌入向量;用训练数据集中至少部分数据训练所述目标模型,直至所述目标模型的损失函数收敛到预设范围内;以及执行模型压缩操作,所述模型压缩操作包括:基于所述训练,自主确定所述多个特征嵌入向量中的至少K个候选特征嵌入向量,所述K为自然数;从所述目标模型中删除所述至少K个候选特征嵌入向量,获得更新后的目标模型;以及用所述训练数据集中至少部分数据训练所述更新后的目标模型,直至所述更新后的目标模型的损失函数收敛到所述预设范围内。

Patent Agency Ranking