一种基于脑源成像技术的电极优选方法

    公开(公告)号:CN108681394B

    公开(公告)日:2021-03-16

    申请号:CN201810352470.2

    申请日:2018-04-19

    Abstract: 本发明公开一种基于脑源成像技术的电极优选方法,利用改进的Fisher准则求得采集到的均匀分布的各个电极的F分数;利用脑电源成像技术,把得到的F分数逆变换到脑皮层,得到相应的脑源分布;求解脑电正问题,即已知脑皮层与头皮层之间的传递矩阵前提下,求得未知电极F分数的估计值;最后,对F分数估计值进行降序排列,选取分数值最高的部分电极作为最优电极。本发明解决了运动想象任务中电极优选依靠经验或者实验采集电极数量大的问题,实现了用少量电极预估计未知电极贡献度并进行电极优选的功能。

    一种面向移动机器人多目标检测的分层特征融合方法

    公开(公告)号:CN112329861A

    公开(公告)日:2021-02-05

    申请号:CN202011235706.8

    申请日:2020-11-06

    Abstract: 本发明涉及移动机器人的环境感知领域,尤其涉及一种面向移动机器人多目标检测的分层特征融合方法,目的在于提高目标检测算法对不同尺度目标的检测能力,从而提高智能机器人的环境感知能力,包括以下步骤:将数据集中的图像输入到预训练好的改进后的VGG‑16中,初步获取特征图;将初步获取的特征图分别输入空洞卷积金字塔结构,该结构包含3种不同扩张率的空洞卷积分支,用于匹配机器人移动时视觉传感器获取的不同尺度大小的目标;将不同分支获取的特征图通过本发明提出的分层叠加的方式进行融合,使特征图中的所有通道均包含不同尺度的特征信息;将融合后的特征图进行逐步卷积,得到不同大小的特征图;最终,获得待检测物体的类别和包围框。

    基于CWT和MLMSFFCNN的脑电识别方法
    93.
    发明公开

    公开(公告)号:CN111582041A

    公开(公告)日:2020-08-25

    申请号:CN202010291359.4

    申请日:2020-04-14

    Abstract: 本发明公开了基于CWT和MLMSFFCNN的脑电识别方法,将各导联运动想象脑电信号进行CWT,得到每导联的时频矩阵;然后,截取信号时频矩阵8-30Hz频带的数据,沿频率轴等分为三个子矩阵;将三个子矩阵分别按列求和,得到三个子序列后,将每个子序列沿时间轴分为三个窗口;结合BCI采集系统导联坐标信息构造MI-EEG信号复合特征矩阵;MLMSFFCNN通过各个级卷积段输出特征的拼接以及各级卷积的多分支结构实现了特征的融合与多分辨率计算;使用MLMSFFCNN对上述MI-EEG复合特征矩阵进行监督训练后,进行十折交叉验证,得到最终的分类结果。本发明通过MLMSFFCNN的特征融合能力与多分辨率计算能力使得信号时、频、空域特征信息能够被充分提取,对于提升MI-EEG信号多域特征表达、分类精度具有重要意义。

    基于深度卷积神经网络识别脑电成像图的方法

    公开(公告)号:CN109726751A

    公开(公告)日:2019-05-07

    申请号:CN201811574691.0

    申请日:2018-12-21

    Abstract: 本发明公开了基于深度卷积神经网络识别脑电成像图的方法,对采集到的运动想象脑电信号进行基线消除预处理;将每导联信号分成若干时间窗口,对每个窗口MI-EEG型号分别进行快速傅里叶变换,将之分别进行快速傅里叶逆变换,计算其相应的时域功率值;将每个窗口得到的时域功率值求均值,得到时域功率特征;将提取的三频带功率特征在数据矩阵中进行插值成像,得到MI-EEG信号的伪RGB图像;DCNN模型设计成五段卷积,每段卷积结束后使用卷积层替代最大池化层进行数据降维;使用训练好的DCNN模型在测试集上进行评估,完成分类测试。MI-EEG成像图在特征表达方面的优势,配合模型拟合能力更强的30层DCNN,对于提升MI-EEG信号特征表达、分类精度具有重要意义。

    一种改进RRT算法的路径规划方法

    公开(公告)号:CN108444489A

    公开(公告)日:2018-08-24

    申请号:CN201810186870.0

    申请日:2018-03-07

    Abstract: 本发明涉及一种改进RRT算法的路径规划方法,属于机器人路径规划技术领域。本方法为克服RRT算法存在的缺点引入目标引力策略。随机树在扩展过程中当遇到障碍物进行随机扩展;当没有遇到障碍物时,引入目标引力策略修正随机树的扩展方向;引入双向扩展方法,分别从起始点和目标点进行扩展。改进的方法提高了规划效率,使规划出的路径更加平滑。最后对规划好的路径进行平滑处理,使路径更加平滑。

    基于DWT和Parametric t-SNE的运动想象脑电信号的特征提取方法

    公开(公告)号:CN105809124B

    公开(公告)日:2018-06-01

    申请号:CN201610125830.6

    申请日:2016-03-06

    Abstract: 基于DWT和Parametric t‑SNE的运动想象脑电信号的特征提取方法,首先,使用Wigner‑Ville分布和功率谱确定脑电特征的有效时、频范围,然后对于特定时间段与频率段的脑电信号进行三层离散小波分解,通过计算其均值、能量均值和均方差等统计特征量作为该脑电信号的时频特征;同时利用参数化t‑SNE算法对上述小波系数进行非线性特征映射,并将对应低维空间中的嵌入坐标作为非线性特征;将两种特征标准化得到同时包含特定时频段脑电信号时频信息和非线性信息的特征向量。本发明不仅获得具有紧致性、完备性的脑电特征,还提出以多层前向传播神经网络拟合非线性映射来解决传统流形学习算法在模式分类应用中泛化性能不足的问题,进一步提高了MI‑EEG信号的模式分类准确性。

    一种基于颜色描述的可变形部件模型物体检测方法

    公开(公告)号:CN104134071B

    公开(公告)日:2017-12-29

    申请号:CN201410277452.4

    申请日:2014-06-20

    Abstract: 本发明公开了一种基于颜色描述的可变形部件模型物体检测方法,本发明属于图像目标检测技术领域,本发明方法提出一种智能的融合形状与颜色特征的物体检测方法,以可变形部件模型为底层框架,在训练模板时在原有的梯度方向直方图特征空间中加入基于语言学的Color Name颜色描述符,得到特定物体类型的形状模板与颜色模板,最后在检测阶段利用梯度方向直方图形状模板与Color Name颜色模板双模板匹配的滑动窗口方法检测物体。本发明方法克服了传统方法由于使用单一特征描述物体而产生误检测的缺点。

    一种基于视觉内容的多层语义地图的创建方法

    公开(公告)号:CN103712617B

    公开(公告)日:2016-08-24

    申请号:CN201310700792.9

    申请日:2013-12-18

    Abstract: 本发明公开一种基于视觉内容的多层语义地图的创建方法,包括:将机器人在环境中漫游拍摄的图像集合按照拍摄地点场景进行标注;构建分层词汇树;构建知识拓扑层,为知识拓扑层赋予知识;构建场景拓扑层;构建地点拓扑层。本发明利用视觉传感器对空间构建多层语义地图,在知识拓扑层使用有向图结构存储和查询知识,可以省去知识表达系统中不必要的操作,插入和查询速度快;利用场景拓扑层对环境进行抽象划分,将整个环境抽象成子区域,可减小图像的检索空间和路径搜索空间;利用地点拓扑层对特定的地点图像进行保存,采用图像检索技术即可自定位,不必维护全局的世界坐标系,解决了自定位估计误差累计问题。

    基于小波包和LSTM型RNN神经网络的脑电识别方法

    公开(公告)号:CN105559777A

    公开(公告)日:2016-05-11

    申请号:CN201610154659.1

    申请日:2016-03-17

    Abstract: 基于小波包和LSTM型RNN神经网络的脑电识别方法,属于生物信息技术领域。具体包括:首先,利用平均功率谱法分析脑电信号的时域特性,确定有效的时域范围。其次,对脑电信号进行小波包分解,基于改进的距离准则获取小波包最优子空间,并选取小波包最优子空间的小波包系数构成脑电特征。最后,以LSTM型RNN神经网络作为分类器对脑电信号进行分类。本发明能够自适应地选取小波包最优子空间,并自动确定最佳频段的小波包系数构成脑电时频特征,其保留了脑电信号的时序信息,而LSTM型RNN神经网络能够充分利用基于小波包变换提取的脑电特征的时序信息,从而提高脑电信号的分类准确率,为脑电信号的识别提供一种新思路。

    基于L1正则化的实时运动目标跟踪的新方法

    公开(公告)号:CN103077537B

    公开(公告)日:2015-07-15

    申请号:CN201310013907.7

    申请日:2013-01-15

    Abstract: 本发明公开了一种基于L1正则化的实时运动目标跟踪的新方法,包括以下步骤:输入第一帧图像并确定跟踪的目标;初始化跟踪姿态;初始化模板集;进行粒子滤波的粒子初始化;获取下一帧图像,转下一步进行跟踪,直到最后一帧;对图像进行预处理;计算粒子与模板的相似度;将最大观测概率的粒子并进行重采样;遮挡检测;模板更新。通过将琐碎模板的系数的二范数项添加到L1最小化模型中,建立新的最小化模型,在模板更新前使用遮挡检测方法检测目标是否存在遮挡,从而改进目标跟踪的精度;利用导数有界和可解析表示求解新的最小化模型,从而使得新的算法能适用于实时运动目标跟踪。本发明可在保证目标跟踪准确度的同时,使算法满足实际应用的性能要求。

Patent Agency Ranking