基于高斯伯努利卷积深度置信网络的脑电信号分类方法

    公开(公告)号:CN109871882A

    公开(公告)日:2019-06-11

    申请号:CN201910067894.9

    申请日:2019-01-24

    Abstract: 本发明请求保护一种基于高斯伯努利卷积深度置信网络的脑电分类信号方法,该方法采用预处理阶段采用基于负熵最大的盲源分离算法去除运动想象脑电的信号干扰;基于互信息选取频率和电极参数,将高斯伯努利受限玻尔兹曼机的无监督学习和卷积神经网络相结合进行特征提取并分类,新的基于高斯伯努利受限玻尔兹曼机的卷积深度置信网络模型模型可以通过生成的卷积滤波器从全尺寸图像中提取出有意义的特性,减少相当多的负权值,能更有效地从邻近的图像补丁中学习空间信息,明显提高了脑电信号类别判别的正确率,使脑电信号类别判别的精确度得到较大改善与提高。

Patent Agency Ranking