-
公开(公告)号:CN115221969A
公开(公告)日:2022-10-21
申请号:CN202210898574.X
申请日:2022-07-28
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于EMD数据增强和并行时空卷积网络(SCN)的运动想象脑电信号识别方法,该方法包括步骤:先对原始脑电信号进行预处理,将预处理的脑电信号采用EMD分解得到本征模态,本征模态按照时间维度分段,并与另一相同标签样本不重复的本征模态段进行组合,进而生成更多符合原始脑电信号特征的人造数据,以解决脑电信号样本量少的问题。接着设计了一种并行时空卷积网络,第一层在时间上做卷积,第二层在通道上做卷积,可充分提取脑电信号的时空特征,并考虑运动想象的节律主要分布在μ和β节律,所以分别将脑电信号的μ和β频段作为并行时空卷积网络的输入,以提取脑电信号时、空、频域的特征并分类。本发明可以有效克服因脑电信号数据量少导致的识别准确率低的问题。
-
公开(公告)号:CN116250849A
公开(公告)日:2023-06-13
申请号:CN202211559232.1
申请日:2022-12-06
Applicant: 重庆邮电大学
IPC: A61B5/372 , A61B5/00 , G06F18/2415 , G06N3/0464 , G06N3/048 , G06N3/047 , G06N3/08
Abstract: 本发明请求保护一种基于信息分离器和区域卷积网络的脑电信号识别方法,包括:采集脑电数据,并对脑电数据进行滤波、小波包分解和数据标准化等预处理;根据电极安装位置构建拓扑图,再将经过预处理的脑电数据嵌入图中;使用所构建的图创建信息分离器获取每个节点独立的源信息,然后使用聚焦区域特征并且关注的区域范围依次递增的区域卷积网络提取脑电信号特征,区域卷积网络包含三个卷积层,分别为提取节点自身特征的节点卷积层、提取以节点为中心的领域特征的领域卷积层和提取全局特征的全局卷积层;最后由全连接层完成分类识别。本发明可显著降低电极之间的信息冗余度并有效提高脑电信号的识别准确率。
-