一种行人再识别的方法
    1.
    发明授权

    公开(公告)号:CN111738048B

    公开(公告)日:2023-08-22

    申请号:CN202010163685.7

    申请日:2020-03-10

    Applicant: 重庆大学

    Abstract: 本发明涉及一种行人再识别的方法,首先获取原始图像集,并给每张原始图像标上类别标签;将每张原始图像处理成灰度图像和低分辨率图像;将每个训练样本的原始RGB图像,灰度图像和低分辨率图像作为LRAN模型的输入,对LRAN模型的参数进行优化得到最终LRAN模型;最后行人再识别,将两张行人图像经过处理后输入最终LRAN模型得到两张图像的特征ff1和特征ff2,计算特征ff1和特征ff2的距离两张原始图像之间的相似度。本方法考虑到了行人图像质量的变化,从原始RGB图像、灰度图像和低分辨率图像中提取并融合三种深度行人特征融合为一个更鲁棒的特征,在一定程度上就消除了图像质量差异在行人再识别过程中带来的影响。

    一种基于知识蒸馏的行人重识别方法

    公开(公告)号:CN113269117B

    公开(公告)日:2022-12-13

    申请号:CN202110625592.6

    申请日:2021-06-04

    Applicant: 重庆大学

    Abstract: 本发明涉及一种基于知识蒸馏的行人重识别方法,该方法建立结构完整行人网络和部分行人网络,以完整行人图像训练完整行人网络,以随机截取的部分图像训练部分行人网络,当损失不再下降,两个网络的训练结束;对于待预测图像,若待预测图像是完整行人图像,则输入训练好的完整行人网络中,否则输入训练好的部分行人网络中,计算待预测图像的特征与数据库中各图像的特征之间的距离,根据距离由大到小的顺序输出与待预测图像的特征之间距离排在前M的图像。本发明方法通过损失计算将完整行人网络和部分行人网络进行联合,提高了检测结果的鲁棒性。

    一种行人再识别的方法
    3.
    发明公开

    公开(公告)号:CN111738048A

    公开(公告)日:2020-10-02

    申请号:CN202010163685.7

    申请日:2020-03-10

    Applicant: 重庆大学

    Abstract: 本发明涉及一种行人再识别的方法,首先获取原始图像集,并给每张原始图像标上类别标签;将每张原始图像处理成灰度图像和低分辨率图像;将每个训练样本的原始RGB图像,灰度图像和低分辨率图像作为LRAN模型的输入,对LRAN模型的参数进行优化得到最终LRAN模型;最后行人再识别,将两张行人图像经过处理后输入最终LRAN模型得到两张图像的特征ff1和特征ff2,计算特征ff1和特征ff2的距离两张原始图像之间的相似度。本方法考虑到了行人图像质量的变化,从原始RGB图像、灰度图像和低分辨率图像中提取并融合三种深度行人特征融合为一个更鲁棒的特征,在一定程度上就消除了图像质量差异在行人再识别过程中带来的影响。

    一种基于知识蒸馏的行人重识别方法

    公开(公告)号:CN113269117A

    公开(公告)日:2021-08-17

    申请号:CN202110625592.6

    申请日:2021-06-04

    Applicant: 重庆大学

    Abstract: 本发明涉及一种基于知识蒸馏的行人重识别方法,该方法建立结构完整行人网络和部分行人网络,以完整行人图像训练完整行人网络,以随机截取的部分图像训练部分行人网络,当损失不再下降,两个网络的训练结束;对于待预测图像,若待预测图像是完整行人图像,则输入训练好的完整行人网络中,否则输入训练好的部分行人网络中,计算待预测图像的特征与数据库中各图像的特征之间的距离,根据距离由大到小的顺序输出与待预测图像的特征之间距离排在前M的图像。本发明方法通过损失计算将完整行人网络和部分行人网络进行联合,提高了检测结果的鲁棒性。

Patent Agency Ranking