-
公开(公告)号:CN104318261B
公开(公告)日:2016-04-27
申请号:CN201410607957.2
申请日:2014-11-03
Applicant: 河南大学
Abstract: 本发明公开了一种图嵌入低秩稀疏表示恢复稀疏表示人脸识别方法,属于计算机视觉和模式识别技术领域。本发明包括以下步骤:首先,提出一种图嵌入低秩稀疏表示恢复方法,能够从训练样本数据矩阵恢复出判别力强的干净训练样本数据矩阵,同时得到训练样本数据误差矩阵;然后,以干净训练样本数据矩阵为字典,以训练样本数据误差矩阵为误差字典,采用范数最优化技术求解待识别人脸数据的稀疏表示系数;更进一步,利用待识别人脸数据的稀疏表示系数,对待识别人脸数据进行类关联重构;最后,基于待识别人脸数据的类关联重构误差,完成待识别人脸图像的识别。本发明能够解决训练样本图像和待识别图像都受噪声污染或局部被遮挡情况下的人脸识别问题。
-
公开(公告)号:CN104318261A
公开(公告)日:2015-01-28
申请号:CN201410607957.2
申请日:2014-11-03
Applicant: 河南大学
Abstract: 本发明公开了一种图嵌入低秩稀疏表示恢复稀疏表示人脸识别方法,属于计算机视觉和模式识别技术领域。本发明包括以下步骤:首先,提出一种图嵌入低秩稀疏表示恢复方法,能够从训练样本数据矩阵恢复出判别力强的干净训练样本数据矩阵,同时得到训练样本数据误差矩阵;然后,以干净训练样本数据矩阵为字典,以训练样本数据误差矩阵为误差字典,采用范数最优化技术求解待识别人脸数据的稀疏表示系数;更进一步,利用待识别人脸数据的稀疏表示系数,对待识别人脸数据进行类关联重构;最后,基于待识别人脸数据的类关联重构误差,完成待识别人脸图像的识别。本发明能够解决训练样本图像和待识别图像都受噪声污染或局部被遮挡情况下的人脸识别问题。
-