一种基于知识图谱的个性化职位推荐方法

    公开(公告)号:CN108920544A

    公开(公告)日:2018-11-30

    申请号:CN201810609066.9

    申请日:2018-06-13

    Abstract: 本发明公开了一种基于知识图谱的个性化职位推荐方法,包括:获取求职招聘领域数据,获取求职者的简历信息,对求职招聘领域数据进行规范化处理;之后进行知识抽取,融合,形成结构化的求职招聘领域知识;将获取的结构化的求职招聘领域知识存入图数据库,构建求职招聘领域知识图谱;构建基于知识图谱的个性化职位推荐模型;读取求职者的简历信息,基于上述知识图谱对简历信息中某些属性进行映射;基于上述知识图谱,根据上述职位推荐模型对职位按行业类别进行过滤,形成待推荐职位列表;针对待推荐职位列表,对简历信息和职位信息中的相应属性进行量化;计算简历信息和职位信息的相似度,筛选出与求职者简历相似度最高的前N个职位生成职位推荐列表,并推荐给求职者。

    给游客推荐其很可能会浏览的景点的方法

    公开(公告)号:CN103559252A

    公开(公告)日:2014-02-05

    申请号:CN201310533179.2

    申请日:2013-11-01

    CPC classification number: G06F17/30864 G06Q10/04

    Abstract: 给游客推荐其很可能会浏览的景点的方法,首先获取游客的浏览行为,并将游客按照景点偏好的相似性聚类成若干个游客群,同时为每个游客群分别构建Markov预测模型,具体包括以下几个步骤:1)数据采集;2)数据预处理;3)景点偏好矩阵建立;4)游客聚类;5)预测模型建立;6)景点预测。将游客进行聚类后构建Markov预测模型的算法比现有方法正确率高,实验效果好,预测效果好。

Patent Agency Ranking