一种结合梯度直方图与低秩约束的去噪方法

    公开(公告)号:CN107358589A

    公开(公告)日:2017-11-17

    申请号:CN201710581668.3

    申请日:2017-07-17

    Abstract: 本发明公开了一种结合梯度直方图与低秩约束的去噪方法,其在稀疏先验和其他非局部自相似先验的基础上,利用稀疏表示的优势,加入非局部正则项,梯度正则项和低秩约束项去除乘性噪声。本发明的优点是把乘性噪声模型通过对数变换变成对数域中的加性噪声模型,利用噪声图像在对数域中训练的字典,把图像的梯度直方图估计和低秩约束相结合,增强了图像局部和非局部之间的联系,在有效去噪的同时,更好的保留了图像的纹理信息。实验结果在主观视觉和客观评价指标两方面均取得较好的效果,很大程度上保存了图像的精细纹理结构,使得去噪后的图像更加清晰。

    一种图像轮廓分割方法及系统

    公开(公告)号:CN110866929B

    公开(公告)日:2022-12-27

    申请号:CN201911098771.8

    申请日:2019-11-12

    Abstract: 本发明提出了一种图像轮廓分割方法及系统。所述分割方法包括如下步骤:首先获取原始图像的边缘指示函数和梯度矢量流,在迭代获取水平集函数的过程中,利用边缘指示函数、梯度矢量流和第n‑1次迭代的水平集函数和偏置域,计算第n次迭代的权重因子、局部强度均值、全局强度均值和偏置域,进而计算水平集函数。本发明在计算水平集函数的过程中引入局部边缘特征(边缘指示函数),从而能更好的保留图像的细节特征,减小弱边界和强度不均匀图像的边界泄露。本发明在计算水平集函数的过程还引入测地边缘项,全面利用图像的边缘信息,增强模型的分割性能,减小复杂背景的干扰,提高了弱边界图像和强度分布不均匀的图像的分割精度。

    一种图像轮廓分割方法及系统

    公开(公告)号:CN110866929A

    公开(公告)日:2020-03-06

    申请号:CN201911098771.8

    申请日:2019-11-12

    Abstract: 本发明提出了一种图像轮廓分割方法及系统。所述分割方法包括如下步骤:首先获取原始图像的边缘指示函数和梯度矢量流,在迭代获取水平集函数的过程中,利用边缘指示函数、梯度矢量流和第n-1次迭代的水平集函数和偏置域,计算第n次迭代的权重因子、局部强度均值、全局强度均值和偏置域,进而计算水平集函数。本发明在计算水平集函数的过程中引入局部边缘特征(边缘指示函数),从而能更好的保留图像的细节特征,减小弱边界和强度不均匀图像的边界泄露。本发明在计算水平集函数的过程还引入测地边缘项,全面利用图像的边缘信息,增强模型的分割性能,减小复杂背景的干扰,提高了弱边界图像和强度分布不均匀的图像的分割精度。

    一种结合梯度直方图与低秩约束的去噪方法

    公开(公告)号:CN107358589B

    公开(公告)日:2019-11-26

    申请号:CN201710581668.3

    申请日:2017-07-17

    Abstract: 本发明公开了一种结合梯度直方图与低秩约束的去噪方法,其在稀疏先验和其他非局部自相似先验的基础上,利用稀疏表示的优势,加入非局部正则项,梯度正则项和低秩约束项去除乘性噪声。本发明的优点是把乘性噪声模型通过对数变换变成对数域中的加性噪声模型,利用噪声图像在对数域中训练的字典,把图像的梯度直方图估计和低秩约束相结合,增强了图像局部和非局部之间的联系,在有效去噪的同时,更好的保留了图像的纹理信息。实验结果在主观视觉和客观评价指标两方面均取得较好的效果,很大程度上保存了图像的精细纹理结构,使得去噪后的图像更加清晰。

Patent Agency Ranking