-
公开(公告)号:CN113779105B
公开(公告)日:2022-12-13
申请号:CN202110921144.0
申请日:2021-08-11
Applicant: 桂林电子科技大学
IPC: G06F16/2458 , G06F16/26 , G06K9/62
Abstract: 本发明涉及轨迹数据技术领域,涉及一种分布式轨迹流伴随模式挖掘方法,包括以下步骤:一、数据预处理:根据地理区域的划分将数据划分为多个区域,得到分区边界,输出分区编号;二、监测不断到达的数据流;三、当前快照创建时间窗口,窗口大小为当前快照时间;四、根据分区编号执行Keyby算子,利用哈希函数分发到不同的节点;五、每个节点对接收到的当前分区的数据执行基于方向的密度聚类,并得到当前分区的密度聚类簇集合;六、进行聚类合并,输出合并后簇的集合;七、执行模式挖掘,与候选伴随集合取交集,生成新的候选伴随,并输出当前快照的伴随模式结果。本算法具有更快的处理速度。
-
公开(公告)号:CN113779105A
公开(公告)日:2021-12-10
申请号:CN202110921144.0
申请日:2021-08-11
Applicant: 桂林电子科技大学
IPC: G06F16/2458 , G06F16/26 , G06K9/62
Abstract: 本发明涉及轨迹数据技术领域,涉及一种分布式轨迹流伴随模式挖掘方法,包括以下步骤:一、数据预处理:根据地理区域的划分将数据划分为多个区域,得到分区边界,输出分区编号;二、监测不断到达的数据流;三、当前快照创建时间窗口,窗口大小为当前快照时间;四、根据分区编号执行Keyby算子,利用哈希函数分发到不同的节点;五、每个节点对接收到的当前分区的数据执行基于方向的密度聚类,并得到当前分区的密度聚类簇集合;六、进行聚类合并,输出合并后簇的集合;七、执行模式挖掘,与候选伴随集合取交集,生成新的候选伴随,并输出当前快照的伴随模式结果。本算法具有更快的处理速度。
-
公开(公告)号:CN112269844A
公开(公告)日:2021-01-26
申请号:CN202011019669.7
申请日:2020-09-24
Applicant: 桂林电子科技大学
IPC: G06F16/29 , G06K9/62 , G06F16/2458
Abstract: 本发明涉及轨迹数据处理技术领域,具体地说,涉及一种基于大规模轨迹数据的通用伴随模式分布式挖掘方法,其以下步骤:一、建立轨迹数据集;二、对轨迹数据集进行分布式聚类:通过DBSCANCD算法进行密度聚类;三、TCB算法以密度聚类结果作为输入,通过计算集合成员间的相似度,对边界点进行合理划分;四、对轨迹数据集进行分布式挖掘:GSPR算法对通用伴随模式挖掘的输入进行分割和重划分,然后通过SAE算法进行挖掘。本发明能够较佳地挖掘通用伴随模式。
-
公开(公告)号:CN112269844B
公开(公告)日:2021-08-06
申请号:CN202011019669.7
申请日:2020-09-24
Applicant: 桂林电子科技大学
IPC: G06F16/29 , G06K9/62 , G06F16/2458
Abstract: 本发明涉及轨迹数据处理技术领域,具体地说,涉及一种基于大规模轨迹数据的通用伴随模式分布式挖掘方法,其以下步骤:一、建立轨迹数据集;二、对轨迹数据集进行分布式聚类:通过DBSCANCD算法进行密度聚类;三、TCB算法以密度聚类结果作为输入,通过计算集合成员间的相似度,对边界点进行合理划分;四、对轨迹数据集进行分布式挖掘:GSPR算法对通用伴随模式挖掘的输入进行分割和重划分,然后通过SAE算法进行挖掘。本发明能够较佳地挖掘通用伴随模式。
-
-
-