-
公开(公告)号:CN111353517B
公开(公告)日:2023-09-26
申请号:CN201811580274.7
申请日:2018-12-24
Applicant: 杭州海康威视数字技术股份有限公司
IPC: G06V10/764 , G06V30/148 , G06V10/24 , G06V10/82 , G06N3/0464 , G06N3/044
Abstract: 本申请提供一种车牌识别方法、装置及电子设备,该方法包括:将已训练的第一网络模型量化处理为第二网络模型;将目标图像输入至所述第二网络模型,获得所述目标图像中车牌的字符识别结果和车牌类别信息;其中,所述第二网络模型基于每一网络层的权值参数、输入方向和输出方向的量化比例系数对所述目标图像进行处理;依据所述字符识别结果和所述车牌类别信息识别所述车牌。本申请通过定点数形式的网络模型进行车牌识别,大大降低了车牌识别过程中占用的内存空间,从而提升了电子设备的运行效率。
-
公开(公告)号:CN110929838A
公开(公告)日:2020-03-27
申请号:CN201811095811.9
申请日:2018-09-19
Applicant: 杭州海康威视数字技术股份有限公司
Inventor: 翁春磊
IPC: G06N3/04
Abstract: 本申请公开了一种神经网络中位宽定点化方法、装置、移动终端和存储介质,属于图像检测技术领域。方法包括:获取神经网络对应的浮点模型和多个样本数据;基于多个样本数据,对浮点模型中的浮点参数、输入数据和输出数据分别进行定点转换,得到浮点参数的第一量化范围、输入数据的第二量化范围和输出数据的第三量化范围;根据第一量化范围、第二量化范围和第三量化范围,基于神经网络的整型卷积运算,对浮点参数的第一量化范围进行调整,得到第四量化范围;将浮点模型中的浮点参数的取值范围调整为第四量化范围得到定点模型。本申请中将浮点运算转为定点运算,提高模型卷积运算速度,降低了内存资源、硬盘存储资源和电量的消耗以及提高了运行速度。
-
公开(公告)号:CN110929838B
公开(公告)日:2023-09-26
申请号:CN201811095811.9
申请日:2018-09-19
Applicant: 杭州海康威视数字技术股份有限公司
Inventor: 翁春磊
IPC: G06N3/0464
Abstract: 本申请公开了一种神经网络中位宽定点化方法、装置、移动终端和存储介质,属于图像检测技术领域。方法包括:获取神经网络对应的浮点模型和多个样本数据;基于多个样本数据,对浮点模型中的浮点参数、输入数据和输出数据分别进行定点转换,得到浮点参数的第一量化范围、输入数据的第二量化范围和输出数据的第三量化范围;根据第一量化范围、第二量化范围和第三量化范围,基于神经网络的整型卷积运算,对浮点参数的第一量化范围进行调整,得到第四量化范围;将浮点模型中的浮点参数的取值范围调整为第四量化范围得到定点模型。本申请中将浮点运算转为定点运算,提高模型卷积运算速度,降低了内存资源、硬盘存储资源和电量的消耗以及提高了运行速度。
-
公开(公告)号:CN111353517A
公开(公告)日:2020-06-30
申请号:CN201811580274.7
申请日:2018-12-24
Applicant: 杭州海康威视数字技术股份有限公司
Abstract: 本申请提供一种车牌识别方法、装置及电子设备,该方法包括:将已训练的第一网络模型量化处理为第二网络模型;将目标图像输入至所述第二网络模型,获得所述目标图像中车牌的字符识别结果和车牌类别信息;其中,所述第二网络模型基于每一网络层的权值参数、输入方向和输出方向的量化比例系数对所述目标图像进行处理;依据所述字符识别结果和所述车牌类别信息识别所述车牌。本申请通过定点数形式的网络模型进行车牌识别,大大降低了车牌识别过程中占用的内存空间,从而提升了电子设备的运行效率。
-
-
-