一种基于宽度学习的轻量级恶意流量检测方法及装置

    公开(公告)号:CN114567511A

    公开(公告)日:2022-05-31

    申请号:CN202210404385.2

    申请日:2022-04-18

    Abstract: 本申请实施例公开了一种基于宽度学习的轻量级恶意流量检测方法及装置。本申请中采用具有线性特征数据和非线性特征数据的目标训练数据X训练初始流量检测分类模型,使得训练模型时采用的神经网络的宽度会更宽,进而使得训练模型时也不需要多层连接的神经网络,所以初始流量检测分类模型的训练过程中的计算量将会更小、训练速度也会更快,对设备的要求也会比较低,更适用于具备有限资源的物联网设备。同时本方案训练得到的目标流量检测分类模型对恶意流量的检测速度也更快,可以满足恶意流量检测的实时性要求。以及由于本方案应用于更靠近物联网中执行业务的各物联网设备的边缘网关设备,可以更及时地通知物联网设备阻断恶意流量。

    一种基于宽度学习的轻量级恶意流量检测方法及装置

    公开(公告)号:CN114567511B

    公开(公告)日:2022-08-19

    申请号:CN202210404385.2

    申请日:2022-04-18

    Abstract: 本申请实施例公开了一种基于宽度学习的轻量级恶意流量检测方法及装置。本申请中采用具有线性特征数据和非线性特征数据的目标训练数据X训练初始流量检测分类模型,使得训练模型时采用的神经网络的宽度会更宽,进而使得训练模型时也不需要多层连接的神经网络,所以初始流量检测分类模型的训练过程中的计算量将会更小、训练速度也会更快,对设备的要求也会比较低,更适用于具备有限资源的物联网设备。同时本方案训练得到的目标流量检测分类模型对恶意流量的检测速度也更快,可以满足恶意流量检测的实时性要求。以及由于本方案应用于更靠近物联网中执行业务的各物联网设备的边缘网关设备,可以更及时地通知物联网设备阻断恶意流量。

Patent Agency Ranking