-
公开(公告)号:CN113743233A
公开(公告)日:2021-12-03
申请号:CN202110912415.6
申请日:2021-08-10
Applicant: 暨南大学
Abstract: 本发明公开了基于YOLOv5和MobileNetV2的车辆型号识别方法,包括以下步骤:S1、获取含车辆型号标签的公开车辆图片数据集;S2、对图片数据集按YOLOv5方式打标签;S3、为图片进行预处理;S4、进行YOLOv5训练,反复优化得到模型参数;S5、对原始图片数据集按YOLOv5标签的锚框数据进行裁剪,尽可能裁剪至图片仅含车辆信息;S6、修改MobileNetV2模型,拼接训练好的YOLOv5模型和修改后的MobileNetV2模型;S7、使用标签为车辆型号的原始数据集,预处理后对新拼接得到的模型进行训练,反复优化提升模型性能,得到优化训练完成的识别模型并将其用于实际车辆型号识别。本发明方法解决现有模型识别速率低,不足以满足交通系统的实时性、高效性以及在条件受限的情况下识别的准确率偏低的问题。
-
公开(公告)号:CN113743233B
公开(公告)日:2023-08-01
申请号:CN202110912415.6
申请日:2021-08-10
Applicant: 暨南大学
IPC: G06V20/54 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了基于YOLOv5和MobileNetV2的车辆型号识别方法,包括以下步骤:S1、获取含车辆型号标签的公开车辆图片数据集;S2、对图片数据集按YOLOv5方式打标签;S3、为图片进行预处理;S4、进行YOLOv5训练,反复优化得到模型参数;S5、对原始图片数据集按YOLOv5标签的锚框数据进行裁剪,尽可能裁剪至图片仅含车辆信息;S6、修改MobileNetV2模型,拼接训练好的YOLOv5模型和修改后的MobileNetV2模型;S7、使用标签为车辆型号的原始数据集,预处理后对新拼接得到的模型进行训练,反复优化提升模型性能,得到优化训练完成的识别模型并将其用于实际车辆型号识别。本发明方法解决现有模型识别速率低,不足以满足交通系统的实时性、高效性以及在条件受限的情况下识别的准确率偏低的问题。
-