-
公开(公告)号:CN115620146A
公开(公告)日:2023-01-17
申请号:CN202211385848.1
申请日:2022-11-07
Applicant: 无锡学院
Abstract: 本发明公开了一种基于Transformer的农作物叶片病害检测方法,涉及农作物病害检测技术领域,包括以下步骤:S1、获取n幅用于模型训练的农作物叶片图像;S2、构建初始的叶片病害检测模型;S3、利用样本集训练初始的叶片病害检测模型,从而得到训练完成的叶片病害检测模型;S4、利用训练完成的叶片病害检测模型对待检测的农作物叶片图像进行检测,得到农作物叶片图像中农作物叶片病害检测结果。本发明模型采用编码器和解码器结构,编码器主要采用Transformer完成特征的提取工作,相较于传统的卷积神经网络速度更快,参数量更少;在解码器中,利用Transformer输出特征图进行特征融合的部分采用通道注意力机制,能够很好的减少模型参数量同时不会使性能下降。
-
公开(公告)号:CN114861883A
公开(公告)日:2022-08-05
申请号:CN202210498101.0
申请日:2022-05-09
Applicant: 无锡学院
Abstract: 本发明涉及一种基于卷积网络的葡萄病斑检测方法,该方法首先获取待检测的葡萄叶片病害数据集和相应的标注掩码图片;然后将数据集随机划分为训练集和测试集两部分;然后构建卷积神经网络,该卷积神经网络包括编码器和解码器,所述编码器包括特征提取器和自注意力模块,所述特征提取器包括两个卷积层和Mish激活函数;所述解码器由上采样和一个特征提取器组成;再将训练集数据输入到上述卷积神经网络中进行训练,并通过Dice损失函数计算网络中输出的Mask图片与对应标注掩码图片Mi中的每个子像素点的差值;同时将计算出来的差值通过反向传播对每一个卷积核进行更新;最后,测试准确率,该方法快捷、高效且相比于现有方法具有更好的泛化性。
-