-
公开(公告)号:CN105888970B
公开(公告)日:2018-09-14
申请号:CN201610324398.3
申请日:2016-05-16
Applicant: 扬州大学
IPC: F03D7/00
Abstract: 本发明公开了一种智能风机叶片基于灰色信息优化的自适应内模振动控制方法,该方法针对复杂运行环境下智能风机叶片振动系统中存在的多种不确定因素,采用基于灰色信息理论优化的自适应内模振动控制方法,即利用灰关联优化的差分进化辨识方式对不确定影响下的叶片振动系统进行精确辨识,使得内模振动过程辨识更加理想精确;利用灰色规划理论对叶片自适应内模振动控制器的参数进行自适应优化调节,有利于提高控制系统的动态特性和鲁棒性,使得闭环系统在克服不确定因素影响的同时能够取得高性能的智能风机叶片自适应振动控制效果。通过本发明,提供的灰色优化自适应内模振动控制方法可克服智能风机叶片在复杂工作环境中的多种不确定性因素影响。
-
公开(公告)号:CN105888970A
公开(公告)日:2016-08-24
申请号:CN201610324398.3
申请日:2016-05-16
Applicant: 扬州大学
IPC: F03D7/00
CPC classification number: Y02E10/723 , F03D7/00 , F05B2270/70
Abstract: 本发明公开了一种智能风机叶片基于灰色信息优化的自适应内模振动控制方法,该方法针对复杂运行环境下智能风机叶片振动系统中存在的多种不确定因素,采用基于灰色信息理论优化的自适应内模振动控制方法,即利用灰关联优化的差分进化辨识方式对不确定影响下的叶片振动系统进行精确辨识,使得内模振动过程辨识更加理想精确;利用灰色规划理论对叶片自适应内模振动控制器的参数进行自适应优化调节,有利于提高控制系统的动态特性和鲁棒性,使得闭环系统在克服不确定因素影响的同时能够取得高性能的智能风机叶片自适应振动控制效果。通过本发明,提供的灰色优化自适应内模振动控制方法可克服智能风机叶片在复杂工作环境中的多种不确定性因素影响。
-