基于遥感影像优化PROSAIL模型参数的叶面积指数和叶绿素含量的反演方法

    公开(公告)号:CN102878957A

    公开(公告)日:2013-01-16

    申请号:CN201210367345.1

    申请日:2012-09-26

    Applicant: 安徽大学

    Abstract: 本发明涉及基于遥感影像优化PROSAIL模型参数的叶面积指数和叶绿素含量的反演方法,包括:下载遥感影像并对其进行预处理,得到多光谱冠层反射率数据;运用PROSAIL模型,根据不同的参数组合建立查找表,确定不同参数和冠层反射率的关系,即回归方程;建立目标函数,结合多光谱冠层反射率数据,优化参数,直至得到目标函数的全局最小值及对应的参数组合,并利用多光谱冠层反射率数据对参数进行更新;根据上述所得到的回归方程、多光谱冠层反射率数据及参数组合,反演得到叶面积指数和叶绿素含量。该方法对传统方法进行了由点及面的扩展,无需田间观测数据,有效降低了传统方法测量叶面积指数和叶绿素含量的成本,提高了反演精度和速度。

    基于遥感影像优化PROSAIL模型参数的叶面积指数和叶绿素含量的反演方法

    公开(公告)号:CN102878957B

    公开(公告)日:2015-05-27

    申请号:CN201210367345.1

    申请日:2012-09-26

    Applicant: 安徽大学

    Abstract: 本发明涉及基于遥感影像优化PROSAIL模型参数的叶面积指数和叶绿素含量的反演方法,包括:下载遥感影像并对其进行预处理,得到多光谱冠层反射率数据;运用PROSAIL模型,根据不同的参数组合建立查找表,确定不同参数和冠层反射率的关系,即回归方程;建立目标函数,结合多光谱冠层反射率数据,优化参数,直至得到目标函数的全局最小值及对应的参数组合,并利用多光谱冠层反射率数据对参数进行更新;根据上述所得到的回归方程、多光谱冠层反射率数据及参数组合,反演得到叶面积指数和叶绿素含量。该方法对传统方法进行了由点及面的扩展,无需田间观测数据,有效降低了传统方法测量叶面积指数和叶绿素含量的成本,提高了反演精度和速度。

Patent Agency Ranking