基于曼巴网络改进域自适应框架的跨模态医学图像分割方法及系统

    公开(公告)号:CN119295496A

    公开(公告)日:2025-01-10

    申请号:CN202411845898.2

    申请日:2024-12-16

    Applicant: 安徽大学

    Abstract: 本发明公开了基于曼巴网络改进域自适应框架的跨模态医学图像分割方法及系统,涉及图像处理领域,其中方法包括:S1.对预先获取的跨模态医学图像数据集进行预处理,并构成源域数据集和目标域数据集;S2.搭建使用曼巴网络改进的域自适应框架,改进域自适应框架包括:生成网络和分割网络;生成网络包括生成器和第一鉴别器,用于基于带标签的源域数据集生成翻译图像;分割网络包含分割器和第二鉴别器;S3.端到端地训练改进域自适应框架,得到分割网络;S4.使用分割网络预测目标域数据集的图像分割结果。本发明能够更好地适配源域和目标域,实现域自适应,并提高在无标签目标域图像上的测试精度。

    基于小样本学习的罕见疾病图像分类方法、设备及存储介质

    公开(公告)号:CN120032170A

    公开(公告)日:2025-05-23

    申请号:CN202510117339.8

    申请日:2025-01-24

    Abstract: 本发明的一种基于小样本学习的罕见疾病图像分类方法、设备及介质,通过巧妙地构建特征回溯融合编码器,利用下一层特征为当前层生成注意力掩码,以减少低层特征中无用的噪声信息,从而更好地将低层特征中空间细节信息融合到高层特征中,有效地提高了模型对胃肠道疾病区域的分类性能;其次,多级原型重构网络进一步捕获支持集和查询集样本之间的语义相关性,以增强支持图像表示上的区分区域,为每个查询样本生成适合当前查询样本的校准类中心。基于欧氏距离的分类器输出该查询样本的分类结果,利用交叉熵函数指导模型优化,确保分类结果的精度。最终,基于小样本学习的罕见疾病图像分类模型经过严格的训练和测试,能够输出每个图像的分类结果。

    基于曼巴网络改进域自适应框架的跨模态医学图像分割方法及系统

    公开(公告)号:CN119295496B

    公开(公告)日:2025-04-08

    申请号:CN202411845898.2

    申请日:2024-12-16

    Applicant: 安徽大学

    Abstract: 本发明公开了基于曼巴网络改进域自适应框架的跨模态医学图像分割方法及系统,涉及图像处理领域,其中方法包括:S1.对预先获取的跨模态医学图像数据集进行预处理,并构成源域数据集和目标域数据集;S2.搭建使用曼巴网络改进的域自适应框架,改进域自适应框架包括:生成网络和分割网络;生成网络包括生成器和第一鉴别器,用于基于带标签的源域数据集生成翻译图像;分割网络包含分割器和第二鉴别器;S3.端到端地训练改进域自适应框架,得到分割网络;S4.使用分割网络预测目标域数据集的图像分割结果。本发明能够更好地适配源域和目标域,实现域自适应,并提高在无标签目标域图像上的测试精度。

Patent Agency Ranking