-
公开(公告)号:CN106228240A
公开(公告)日:2016-12-14
申请号:CN201610615714.2
申请日:2016-07-30
Applicant: 复旦大学
Abstract: 本发明方法属于数字图像处理、模式识别技术领域。具体为一种基于FPGA的深度卷积神经网络实现方法。本发明实现的硬件平台是XilinxZYNQ-7030可编程片上SoC,硬件平台内置FPGA和ARM Cortex A9处理器。本发明首先将训练好的网络模型参数加载到FPGA端,然后在ARM端对输入数据进行预处理,再将结果传输到FPGA端,在FPGA端实现深度卷积神经网络的卷积计算和下采样,形成数据特征向量并传输至ARM端,完成特征分类计算。本发明利用FPGA的快速并行处理和极低功耗的高效能计算特性,实现深度卷积神经网络模型中复杂度最高的卷积计算部分,在保证算法正确率的前提下,大幅提升算法效率,降低功耗。
-
公开(公告)号:CN106250939A
公开(公告)日:2016-12-21
申请号:CN201610619786.4
申请日:2016-07-30
Applicant: 复旦大学
Abstract: 本发明属于数字图像处理、模式识别技术领域,具体为一种基于FPGA+ARM多层卷积神经网络的手写体字符识别方法。本发明实现的硬件平台是Xilinx ZYNQ-7030可编程片上SoC,硬件平台内置FPGA处理器和ARM Cortex A9。本发明首先在ARM端对输入的待识别手写体字符图像进行预处理,然后将结果图像传输到FPGA端,利用多层卷积神经网络提取图像特征,特征向量传输至ARM端完成手写体字符的识别。本发明充分利用了FPGA对大量简单重复计算的硬件并行处理能力和ARM的灵活可扩展优势,在保证算法模型性能的前提下,大幅降低了系统功耗。本发明的处理效率功耗比是主流服务器+GPU实现方案的10倍以上,有效解决了主流服务器+GPU方案功耗过大的问题。
-
公开(公告)号:CN106228240B
公开(公告)日:2020-09-01
申请号:CN201610615714.2
申请日:2016-07-30
Applicant: 复旦大学
Abstract: 本发明方法属于数字图像处理、模式识别技术领域。具体为一种基于FPGA的深度卷积神经网络实现方法。本发明实现的硬件平台是XilinxZYNQ‑7030可编程片上SoC,硬件平台内置FPGA和ARM Cortex A9处理器。本发明首先将训练好的网络模型参数加载到FPGA端,然后在ARM端对输入数据进行预处理,再将结果传输到FPGA端,在FPGA端实现深度卷积神经网络的卷积计算和下采样,形成数据特征向量并传输至ARM端,完成特征分类计算。本发明利用FPGA的快速并行处理和极低功耗的高效能计算特性,实现深度卷积神经网络模型中复杂度最高的卷积计算部分,在保证算法正确率的前提下,大幅提升算法效率,降低功耗。
-
公开(公告)号:CN106250939B
公开(公告)日:2020-07-24
申请号:CN201610619786.4
申请日:2016-07-30
Applicant: 复旦大学
Abstract: 本发明属于数字图像处理、模式识别技术领域,具体为一种基于FPGA+ARM多层卷积神经网络的手写体字符识别方法。本发明实现的硬件平台是Xilinx ZYNQ‑7030可编程片上SoC,硬件平台内置FPGA处理器和ARM Cortex A9。本发明首先在ARM端对输入的待识别手写体字符图像进行预处理,然后将结果图像传输到FPGA端,利用多层卷积神经网络提取图像特征,特征向量传输至ARM端完成手写体字符的识别。本发明充分利用了FPGA对大量简单重复计算的硬件并行处理能力和ARM的灵活可扩展优势,在保证算法模型性能的前提下,大幅降低了系统功耗。本发明的处理效率功耗比是主流服务器+GPU实现方案的10倍以上,有效解决了主流服务器+GPU方案功耗过大的问题。
-
公开(公告)号:CN108596143B
公开(公告)日:2021-07-27
申请号:CN201810435661.5
申请日:2018-05-03
Applicant: 复旦大学
Abstract: 为提供一种既能够完成大规模的人脸识别,又能够减小计算量从而降低硬件需求、减少训练所需时间的人脸识别方法及装置,本发明提供了一种基于残差量化卷积神经网络的人脸识别方法,包括如下步骤:步骤S1,构建卷积神经网络模型并进行训练;步骤S2,对目标图像进行预处理并对待判定图像进行预处理;步骤S3,将预处理待判定图像及预处理目标图像依次输入特征提取模型,得到待判定特征向量以及目标特征向量;步骤S4,根据目标特征向量以及待判定向量判定一致的人脸图像,其中,步骤S1包括将预定层设定为量化层并对量化层参数进行整数位量化来近似该量化层的参数矩阵的步骤。本发明还提供了基于残差量化卷积神经网络的人脸识别装置。
-
公开(公告)号:CN108596143A
公开(公告)日:2018-09-28
申请号:CN201810435661.5
申请日:2018-05-03
Applicant: 复旦大学
Abstract: 为提供一种既能够完成大规模的人脸识别,又能够减小计算量从而降低硬件需求、减少训练所需时间的人脸识别方法及装置,本发明提供了一种基于残差量化卷积神经网络的人脸识别方法,包括如下步骤:步骤S1,构建卷积神经网络模型并进行训练;步骤S2,对目标图像进行预处理并对待判定图像进行预处理;步骤S3,将预处理待判定图像及预处理目标图像依次输入特征提取模型,得到待判定特征向量以及目标特征向量;步骤S4,根据目标特征向量以及待判定向量判定一致的人脸图像,其中,步骤S1包括将预定层设定为量化层并对量化层参数进行整数位量化来近似该量化层的参数矩阵的步骤。本发明还提供了基于残差量化卷积神经网络的人脸识别装置。
-
-
-
-
-