-
公开(公告)号:CN115758898A
公开(公告)日:2023-03-07
申请号:CN202211485897.2
申请日:2022-11-24
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于深度学习的海洋稀疏观测数据同化方法,属于海洋观测技术领域。首先根据海洋历史再分析数据构建训练数据集,然后构建基于深度学习的神经网络模型,并利用训练数据集对该基于深度学习的神经网络模型进行训练,得到稀疏观测数据同化计算模型。最后将稀疏观测数据输入同化计算模型中,得到融合观测信息后的分析场。本发明利用深度神经网络的非线性映射能力,通过学习海洋历史再分析数据构建稀疏观测数据同化计算模型,提高了稀疏观测数据的利用效率,克服了现有数据同化技术的不足。