-
公开(公告)号:CN111599464B
公开(公告)日:2023-12-15
申请号:CN202010401516.2
申请日:2020-05-13
Applicant: 吉林大学第一医院
Abstract: 本发明提供了一种基于直肠癌影像组学研究的新型多模态融合辅助诊断方法,包括:步骤一、获取直肠癌多种模态的医学影像,并进行预处理;步骤二、对预处理之后的医学影像进行分层分割,并获取每一层医学影像对应的感兴趣区域;步骤三、对每一种模态医学影像的每一个感兴趣区域进行特征提取,获取对应的高维影像组学特征;步骤四、对所获取样本及对应获取得到的高维影像组学特征进行随机划分得到训练集和测试集,并在训练组数据内进行特征降维;步骤五、基于T2加权成像、弥散加权成像及CT影像的低维影像组学特征,分别构建影像组学标签;步骤六、对所获得的各个标签进行系数加权,经(56)对比文件陈民宁.肾细胞癌的不典型CT、MR表现及鉴别诊断.中国继续医学教育.2018,全文.XM Guo.Value of Multi-MR Techniquesin Diagnosis of Prostate Cancer. ChineseComputed Medical Imaging.2008,全文.董雨桐.MSCT胃多期增强及重建精准诊断异位胰腺1例《.中国实验诊断学》.2019,
-
公开(公告)号:CN111599464A
公开(公告)日:2020-08-28
申请号:CN202010401516.2
申请日:2020-05-13
Applicant: 吉林大学第一医院
Abstract: 本发明提供了一种基于直肠癌影像组学研究的新型多模态融合辅助诊断方法,包括:步骤一、获取直肠癌多种模态的医学影像,并进行预处理;步骤二、对预处理之后的医学影像进行分层分割,并获取每一层医学影像对应的感兴趣区域;步骤三、对每一种模态医学影像的每一个感兴趣区域进行特征提取,获取对应的高维影像组学特征;步骤四、对所获取样本及对应获取得到的高维影像组学特征进行随机划分得到训练集和测试集,并在训练组数据内进行特征降维;步骤五、基于T2加权成像、弥散加权成像及CT影像的低维影像组学特征,分别构建影像组学标签;步骤六、对所获得的各个标签进行系数加权,经线性组合后得到多模态融合影像组学评分,用于直肠癌辅助诊断。
-