基于跨层特征校准融合的目标跟踪方法及系统

    公开(公告)号:CN116128928A

    公开(公告)日:2023-05-16

    申请号:CN202310192731.X

    申请日:2023-03-02

    Abstract: 本发明涉及一种基于跨层特征校准融合的目标跟踪方法及系统,该方法包括:将模板区域图像和搜索区域图像输入共享权重的孪生卷积神经网络;分别采用修改后的resnet50提取模板分支和搜索分支的特征,提取第三个、第四个卷积块的特征;分别使用基于注意力的特征融合模块融合模板分支、搜索分支的第三个和第四个卷积块的特征;模板分支和搜索分支分别使用跨层校准模块通过融合后的特征来校准第四个卷积块的特征;分别对模板分支和搜索分支的第三个卷积块特征、融合后的特征、校准后的特征做深度互相关,得到三个相似性响应图,拼接在一起并降维;将降维后的相似性响应图输入预测头进行分类回归,最后得到目标的位置。该方法及系统有利于提高目标跟踪的性能。

Patent Agency Ranking