一种利用短程关联和长程修剪的多目标跟踪与分割方法

    公开(公告)号:CN112132152B

    公开(公告)日:2022-05-27

    申请号:CN202010994613.7

    申请日:2020-09-21

    Applicant: 厦门大学

    Inventor: 王菡子 李玉磊

    Abstract: 一种利用短程关联和长程修剪的多目标跟踪与分割方法,涉及计算机视觉。训练用于分割和跟踪的卷积神经网络,将视频图片输入训练后的网络,得视频图片中每个目标实例对应的分割位置和实例表征向量;使用欧式距离度量不同实例之间表征向量的空间距离及实例掩码中心距离,度量转化成向量相似性得分和掩码中心相似性得分;用实例掩码和边缘框在相邻帧之间的传播得分得掩码相似性得分和边缘框相似性得分;利用四种相似性得分和匈牙利算法得视频中目标实例的运动轨迹;在目标实例轨迹中,使用先前帧的目标实例置信得分对当前帧目标实例置信得分进行调整,并清除实例置信得分低的运动轨迹,得到高置信得分的长程运动轨迹。具有较高精度和鲁棒性。

    一种利用短程关联和长程修剪的多目标跟踪与分割方法

    公开(公告)号:CN112132152A

    公开(公告)日:2020-12-25

    申请号:CN202010994613.7

    申请日:2020-09-21

    Applicant: 厦门大学

    Inventor: 王菡子 李玉磊

    Abstract: 一种利用短程关联和长程修剪的多目标跟踪与分割方法,涉及计算机视觉。训练用于分割和跟踪的卷积神经网络,将视频图片输入训练后的网络,得视频图片中每个目标实例对应的分割位置和实例表征向量;使用欧式距离度量不同实例之间表征向量的空间距离及实例掩码中心距离,度量转化成向量相似性得分和掩码中心相似性得分;用实例掩码和边缘框在相邻帧之间的传播得分得掩码相似性得分和边缘框相似性得分;利用四种相似性得分和匈牙利算法得视频中目标实例的运动轨迹;在目标实例轨迹中,使用先前帧的目标实例置信得分对当前帧目标实例置信得分进行调整,并清除实例置信得分低的运动轨迹,得到高置信得分的长程运动轨迹。具有较高精度和鲁棒性。

Patent Agency Ranking