-
公开(公告)号:CN114066071B
公开(公告)日:2024-09-13
申请号:CN202111375172.3
申请日:2021-11-19
Applicant: 厦门大学
IPC: G06Q10/04 , G06Q10/0631 , G06Q50/06 , G06Q10/0635
Abstract: 本发明涉及一种基于能耗的电力参数优化方法、终端设备及存储介质,该方法中包括:通过特征选择算法对各设备电力特征参数进行特征筛选;构建基于LSTM网络的能耗预测模型,通过特征筛选后的设备电力特征参数对应的参数值和整体能耗指标对应的参数值对能耗预测模型进行训练;将训练后的能耗预测模型与基于强化学习的策略网络相结合,利用能耗预测模型对策略网络智能体给出的优化策略进行评估,对策略网络进行训练后得到能够输出各参数的最优调整策略及其评估结果的智能体;通过训练后的智能体得到最优的参数调整策略。本发明能够对能耗进行准确预测,且能够进一步提出能耗的优化建议。
-
公开(公告)号:CN114066071A
公开(公告)日:2022-02-18
申请号:CN202111375172.3
申请日:2021-11-19
Applicant: 厦门大学
Abstract: 本发明涉及一种基于能耗的电力参数优化方法、终端设备及存储介质,该方法中包括:通过特征选择算法对各设备电力特征参数进行特征筛选;构建基于LSTM网络的能耗预测模型,通过特征筛选后的设备电力特征参数对应的参数值和整体能耗指标对应的参数值对能耗预测模型进行训练;将训练后的能耗预测模型与基于强化学习的策略网络相结合,利用能耗预测模型对策略网络智能体给出的优化策略进行评估,对策略网络进行训练后得到能够输出各参数的最优调整策略及其评估结果的智能体;通过训练后的智能体得到最优的参数调整策略。本发明能够对能耗进行准确预测,且能够进一步提出能耗的优化建议。
-