-
公开(公告)号:CN114998973B
公开(公告)日:2024-11-05
申请号:CN202210767992.5
申请日:2022-06-30
Applicant: 南京邮电大学
IPC: G06V40/16 , G06V10/764 , G06V10/774 , G06V10/80 , G06N3/0475 , G06N3/0464 , G06N3/094 , G06N3/084
Abstract: 本发明公开了一种基于域自适应的微表情识别方法,该方法包括以下步骤:将普通表情域作为源域,微表情域作为目标域,对普通表情和微表情图像进行预处理,建立源域和目标域样本集;构建包含特征学习模块、分类器和域判别器的对抗网络;在每个批次对对抗网络的训练中,用源域样本训练特征学习模块、分类器和域判别器,用目标域样本训练特征学习模块和域判别器,通过对抗学习使得源域和目标域样本的特征分布差异最小化,实现域的自适应;利用训练好的特征学习模块和分类器构建微表情识别模型,对输入的图像进行微表情识别。本发明利用现有普通表情样本去辅助微表情识别,以解决微表情训练样本数量不足的问题,提高微表情识别的准确率和鲁棒性。
-
公开(公告)号:CN114998973A
公开(公告)日:2022-09-02
申请号:CN202210767992.5
申请日:2022-06-30
Applicant: 南京邮电大学
IPC: G06V40/16 , G06V10/764 , G06V10/774 , G06V10/80 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于域自适应的微表情识别方法,该方法包括以下步骤:将普通表情域作为源域,微表情域作为目标域,对普通表情和微表情图像进行预处理,建立源域和目标域样本集;构建包含特征学习模块、分类器和域判别器的对抗网络;在每个批次对对抗网络的训练中,用源域样本训练特征学习模块、分类器和域判别器,用目标域样本训练特征学习模块和域判别器,通过对抗学习使得源域和目标域样本的特征分布差异最小化,实现域的自适应;利用训练好的特征学习模块和分类器构建微表情识别模型,对输入的图像进行微表情识别。本发明利用现有普通表情样本去辅助微表情识别,以解决微表情训练样本数量不足的问题,提高微表情识别的准确率和鲁棒性。
-