基于YOLOV3的目标检测算法在嵌入式设备上的实现方法

    公开(公告)号:CN109977953A

    公开(公告)日:2019-07-05

    申请号:CN201910246900.7

    申请日:2019-03-29

    Abstract: 本发明公开了计算机视觉图像处理领域的一种基于YOLOV3的目标检测算法在嵌入式设备上的实现方法,旨在解决传统的大型图像处理设备很难在实际的应用场景中部署,获取数据周期长、处理图像数据的实时性差的问题。包括步骤:激活开发板,使其具备可使用的操作系统;安装工具包;准备YOLOV3的运行环境DARKNET框架文件,保存在darknet文件夹下;修改darknet文件夹下的配置文件Makefile中的参数使其与开发板的硬件配置相匹配;编译安装darknet;下载并保存权重文件;运行测试。本发明能够在便于安装使用的嵌入式设备上实现、适用于不同场景下并具有很高的目标检测准确率。

    一种基于深度学习的球员识别方法

    公开(公告)号:CN109766768A

    公开(公告)日:2019-05-17

    申请号:CN201811547459.8

    申请日:2018-12-18

    Abstract: 本发明公开了一种基于深度学习的球员识别方法,该方法步骤:(1)下载高清篮球比赛的视频,并将视频抽成一帧一帧的图片;(2)在图片上对运动员进行截取,得到210张球衣号码较为清晰的运动员图片;(3)根据球员的球衣号码,对210张图片使用Bounding Box标记出号码的位置,并给出标签完成分类;(4)对YOLOv3算法进行修改后对数据集进行训练,训练完成后保存训练好的权重;(5)对测试图片进行测试,直接回归出目标的边界框及分类类别,实现球衣号码的定位以及号码识别,从而实现球员的识别,本发明能够利用对球衣号码的定位以及识别实现对运动员的自动识别,测试结果具有很好的准确性和鲁棒性,大大减少了以往普遍采用的人工查找方式的工作量。

Patent Agency Ranking