基于改进的YOLOv5s的小目标布匹瑕疵检测方法

    公开(公告)号:CN117152484B

    公开(公告)日:2024-03-26

    申请号:CN202310887250.0

    申请日:2023-07-19

    Abstract: 本发明公开一种基于改进的YOLOv5s的小目标布匹瑕疵检测方法,属于机器视觉检测技术领域,获取小目标布匹瑕疵图像,建立初始的数据集;对小目标布匹瑕疵数据集进行聚类分析并得到聚类中心;将聚类中心值输入至YOLOv5s网络;在YOLOv5s网络引入CA注意力模块,使网络在更大区域内进行注意;采用BiFPN结构作为YOLOv5s网络模型的特征融合网络;采用Eiou损失函数代替原损失函数,不仅考虑了中心点距离和纵横比,而且还考虑了预测框与真实框宽度和高度的真实差异,提高了锚框的预测精度。结果表明,相较于原YOLOv5s算法,本发明在小目标布匹瑕疵检测上具有更强的特征提取能力和更高的检测精度。

    改进YOLOv5s的小目标布匹瑕疵检测方法

    公开(公告)号:CN117152484A

    公开(公告)日:2023-12-01

    申请号:CN202310887250.0

    申请日:2023-07-19

    Abstract: 本发明公开一种改进YOLOv5s的小目标布匹瑕疵检测方法,属于机器视觉检测技术领域,获取小目标布匹瑕疵图像,建立初始的数据集;对小目标布匹瑕疵数据集进行聚类分析并得到聚类中心;将聚类中心值输入至YOLOv5s网络;在YOLOv5s网络引入CA注意力模块,使网络在更大区域内进行注意;采用BiFPN结构作为YOLOv5s网络模型的特征融合网络;采用Eiou损失函数代替原损失函数,不仅考虑了中心点距离和纵横比,而且还考虑了预测框与真实框宽度和高度的真实差异,提高了锚框的预测精度。结果表明,相较于原YOLOv5s算法,本发明在小目标布匹瑕疵检测上具有更强的特征提取能力和更高的检测精度。

Patent Agency Ranking