融合中大尺度环流数据的长江流域次季节降水预测方法

    公开(公告)号:CN118228003A

    公开(公告)日:2024-06-21

    申请号:CN202410639425.0

    申请日:2024-05-22

    Abstract: 本发明提供了融合中大尺度环流数据的长江流域次季节降水预测方法,包括:步骤1,获取具有相同时空分辨率的降水格点数据和大气环流气象因子数据;步骤2,将步骤1获取的数据进行要素维度定义和聚合处理;步骤3,构建原始预测模型;步骤4,对原始预测模型进行训练;步骤5,利用验证集来评估模型的性能,得到训练完成的定量预测次季节降水的模型;步骤6,通过定量预测次季节降水的模型得到整个长江流域的次季节降水数据。针对长江流域受大气环流气候时滞影响显著的情况,本发明通过深入学习并捕捉这些影响因素的特征和权重,实现了对次季节降水预测效果的提升。

    融合中大尺度环流数据的长江流域次季节降水预测方法

    公开(公告)号:CN118228003B

    公开(公告)日:2024-07-30

    申请号:CN202410639425.0

    申请日:2024-05-22

    Abstract: 本发明提供了融合中大尺度环流数据的长江流域次季节降水预测方法,包括:步骤1,获取具有相同时空分辨率的降水格点数据和大气环流气象因子数据;步骤2,将步骤1获取的数据进行要素维度定义和聚合处理;步骤3,构建原始预测模型;步骤4,对原始预测模型进行训练;步骤5,利用验证集来评估模型的性能,得到训练完成的定量预测次季节降水的模型;步骤6,通过定量预测次季节降水的模型得到整个长江流域的次季节降水数据。针对长江流域受大气环流气候时滞影响显著的情况,本发明通过深入学习并捕捉这些影响因素的特征和权重,实现了对次季节降水预测效果的提升。

Patent Agency Ranking