-
公开(公告)号:CN114528042A
公开(公告)日:2022-05-24
申请号:CN202210114199.5
申请日:2022-01-30
Applicant: 南京信息工程大学
IPC: G06F9/445
Abstract: 本发明公开了基于深度强化学习的节能型自动互联车辆服务卸载方法,该发明提出名为ECAC的分布式服务卸载方法。ECAC基于异步深度强化学习方法——异步优势行动者‑评论家(A3C)算法,将A3C映射到了端‑边‑云协同系统中。其核心思想是将ECD映射为A3C中的智能体,指导自己对于车辆服务的卸载决策;将云服务器映射为A3C中的中央网络,用于统筹和归纳各智能体的学习结果,并在每次参数更新后将自身参数拷贝到对应的ECD中。整个算法具备系统的需求动态学习、自动调整卸载策略的特征,能够满足不同时延敏感度的服务的需求。并且能长远地兼顾能耗和时延问题,做到绿色、高质量服务。
-
公开(公告)号:CN114528042B
公开(公告)日:2023-04-21
申请号:CN202210114199.5
申请日:2022-01-30
Applicant: 南京信息工程大学
IPC: G06F9/445
Abstract: 本发明公开了基于深度强化学习的节能型自动互联车辆服务卸载方法,该发明提出名为ECAC的分布式服务卸载方法。ECAC基于异步深度强化学习方法——异步优势行动者‑评论家(A3C)算法,将A3C映射到了端‑边‑云协同系统中。其核心思想是将ECD映射为A3C中的智能体,指导自己对于车辆服务的卸载决策;将云服务器映射为A3C中的中央网络,用于统筹和归纳各智能体的学习结果,并在每次参数更新后将自身参数拷贝到对应的ECD中。整个算法具备系统的需求动态学习、自动调整卸载策略的特征,能够满足不同时延敏感度的服务的需求。并且能长远地兼顾能耗和时延问题,做到绿色、高质量服务。
-