基于残差域深度学习特征的图像拷贝检测方法

    公开(公告)号:CN112926598B

    公开(公告)日:2021-12-07

    申请号:CN202110249157.8

    申请日:2021-03-08

    Abstract: 本发明公开了一种基于残差域深度学习特征的图像拷贝检测方法,具体为:提取原始图像和待检测图像的SIFT特征;将两幅图像的SIFT特征进行匹配得到SIFT匹配对;然后将错误的SIFT匹配对过滤,保留其中3对SIFT匹配对,再计算出两幅图像之间的仿射变换矩阵;使用仿射变换矩阵对原始图像进行仿射变换;然后分别计算出变换后原始图像上的重叠区域以及待检测图像上的重叠区域,将两个重叠区域逐像素做差值运算,得到残差图像;将残差图像送入基于多层特征融合的CNN中,从而判断出两幅图像是否为拷贝关系。本发明在保持检测效率的同时,显著地提高了检测精度,且对于视觉上高度相似的拷贝图像和相似图像具有很强的区分能力。

    基于残差域深度学习特征的图像拷贝检测方法

    公开(公告)号:CN112926598A

    公开(公告)日:2021-06-08

    申请号:CN202110249157.8

    申请日:2021-03-08

    Abstract: 本发明公开了一种基于残差域深度学习特征的图像拷贝检测方法,具体为:提取原始图像和待检测图像的SIFT特征;将两幅图像的SIFT特征进行匹配得到SIFT匹配对;然后将错误的SIFT匹配对过滤,保留其中3对SIFT匹配对,再计算出两幅图像之间的仿射变换矩阵;使用仿射变换矩阵对原始图像进行仿射变换;然后分别计算出变换后原始图像上的重叠区域以及待检测图像上的重叠区域,将两个重叠区域逐像素做差值运算,得到残差图像;将残差图像送入基于多层特征融合的CNN中,从而判断出两幅图像是否为拷贝关系。本发明在保持检测效率的同时,显著地提高了检测精度,且对于视觉上高度相似的拷贝图像和相似图像具有很强的区分能力。

Patent Agency Ranking