-
公开(公告)号:CN113344136B
公开(公告)日:2022-03-15
申请号:CN202110763216.3
申请日:2021-07-06
Applicant: 南京信息工程大学
Abstract: 本发明提出一种基于Mask R‑CNN深度学习模型的反气旋客观识别方法,以提高反气旋识别的准确性,并提升对反气旋系统二维外形特征的客观描述能力。本发明提出的反气旋客观识别方法利用海平面气压数据与人工识别反气旋数据训练Mask R‑CNN深度学习模型,通过训练好的模型得到机器识别反气旋数据。本发明的客观识别方法可对反气旋进行较为准确的个体位置识别,同时该客观识别方法对实际存在的反气旋系统有较为良好的二维外形特征表述能力。
-
公开(公告)号:CN113344136A
公开(公告)日:2021-09-03
申请号:CN202110763216.3
申请日:2021-07-06
Applicant: 南京信息工程大学
Abstract: 本发明提出一种基于Mask R‑CNN深度学习模型的反气旋客观识别方法,以提高反气旋识别的准确性,并提升对反气旋系统二维外形特征的客观描述能力。本发明提出的反气旋客观识别方法利用海平面气压数据与人工识别反气旋数据训练Mask R‑CNN深度学习模型,通过训练好的模型得到机器识别反气旋数据。本发明的客观识别方法可对反气旋进行较为准确的个体位置识别,同时该客观识别方法对实际存在的反气旋系统有较为良好的二维外形特征表述能力。
-