-
公开(公告)号:CN118072361B
公开(公告)日:2024-07-12
申请号:CN202410496315.3
申请日:2024-04-24
Applicant: 南京信息工程大学
IPC: G06V40/10 , G06V20/52 , G06V20/40 , G06V10/40 , G06V10/74 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06V10/62
Abstract: 本发明公开了一种基于随机游走的小股行人重识别方法及系统,所述方法包括以下步骤:(1)捕捉到的行人视频并进行预处理;(2)将图片通过单目估计算法得到深度图,并对单人深度图计算深度平均值;通过vision transformer得到行人特征,将行人特征通过按深度平均值大小依次构建成具有不同节点的图结构;(3)通过随机游走模块对图进行重构,每添加一个图节点计算该探针图像和图库图像之间的亲和力分数,并计算该组成员的亲和力分数平均值,得到亲和力分数平均值最高的图;(4)将重构的图在图间通过组上下文信息传递,更新图节点特征,结合注意力机制,进行组匹配,预测两组的匹配得分;本发明节约了大量的人力成本和时间成本。
-
公开(公告)号:CN117635973B
公开(公告)日:2024-05-10
申请号:CN202311661718.0
申请日:2023-12-06
Applicant: 南京信息工程大学
IPC: G06V10/62 , G06V20/52 , G06V20/40 , G06V40/10 , G06V10/26 , G06V10/25 , G06V10/44 , G06V10/42 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明公开了一种基于多层动态集中和局部金字塔聚合的换衣行人重识别方法,包括以下步骤:(1)对图像数据集添加风雨场景并执行标准化预处理及数据增强操作;(2)构建输入到Transformer模型的序列;(3)构建基于标准Transformer架构的行人特征提取网络;(4)利用多层动态聚焦模块,对得到的Transformer各层特征进行动态权重调整与融合处理;(5)通过局部金字塔聚合模块选择性地提取并融合Transformer网络中的特定层特征,以获取多尺度特征信息;(6)根据步骤(4)‑(5)所得的特征输出应用于损失函数,以验证查询图像与测试图像是否为同一类别,从而完成模型的训练和优化;本发明在复杂场景下,尤其是面对换衣行人重识别任务时,能够显著提升算法的识别精度和鲁棒性。
-
公开(公告)号:CN118072361A
公开(公告)日:2024-05-24
申请号:CN202410496315.3
申请日:2024-04-24
Applicant: 南京信息工程大学
IPC: G06V40/10 , G06V20/52 , G06V20/40 , G06V10/40 , G06V10/74 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06V10/62
Abstract: 本发明公开了一种基于随机游走的小股行人重识别方法及系统,所述方法包括以下步骤:(1)捕捉到的行人视频并进行预处理;(2)将图片通过单目估计算法得到深度图,并对单人深度图计算深度平均值;通过vision transformer得到行人特征,将行人特征通过按深度平均值大小依次构建成具有不同节点的图结构;(3)通过随机游走模块对图进行重构,每添加一个图节点计算该探针图像和图库图像之间的亲和力分数,并计算该组成员的亲和力分数平均值,得到亲和力分数平均值最高的图;(4)将重构的图在图间通过组上下文信息传递,更新图节点特征,结合注意力机制,进行组匹配,预测两组的匹配得分;本发明节约了大量的人力成本和时间成本。
-
公开(公告)号:CN117635973A
公开(公告)日:2024-03-01
申请号:CN202311661718.0
申请日:2023-12-06
Applicant: 南京信息工程大学
IPC: G06V10/62 , G06V20/52 , G06V20/40 , G06V40/10 , G06V10/26 , G06V10/25 , G06V10/44 , G06V10/42 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明公开了一种基于多层动态集中和局部金字塔聚合的换衣行人重识别方法,包括以下步骤:(1)对图像数据集添加风雨场景并执行标准化预处理及数据增强操作;(2)构建输入到Transformer模型的序列;(3)构建基于标准Transformer架构的行人特征提取网络;(4)利用多层动态聚焦模块,对得到的Transformer各层特征进行动态权重调整与融合处理;(5)通过局部金字塔聚合模块选择性地提取并融合Transformer网络中的特定层特征,以获取多尺度特征信息;(6)根据步骤(4)‑(5)所得的特征输出应用于损失函数,以验证查询图像与测试图像是否为同一类别,从而完成模型的训练和优化;本发明在复杂场景下,尤其是面对换衣行人重识别任务时,能够显著提升算法的识别精度和鲁棒性。
-
-
-