基于语义表征的无监督域适应图像分类方法

    公开(公告)号:CN116486172A

    公开(公告)日:2023-07-25

    申请号:CN202310480760.6

    申请日:2023-04-28

    Inventor: 田青 周家仲 周彤

    Abstract: 本发明公开了一种基于语义表征的无监督域适应图像分类方法,包括:步骤1)预训练和自训练:使用源域预训练模型,并结合自训练学习初步获取目标域的伪标签;步骤2)提取类别语义表征:通过改变语义向量方向,决策类别的有效语义表征,提取到有效类别语义表征;步骤3)模糊跨域语义表征:以图像域标签为指导,改变跨域样本的语义向量方向,获得跨域语义表征,进一步模糊这些跨域语义表征;步骤4)重构分析:对有效类别语义表征和模糊后的跨域语义表征分别生成新的样本表征,并进行重构分析;步骤5)训练分类器和域判别器:使用新样本表征训练分类器和域判别器,计算分类损失和对抗损失;步骤6)模型优化:梯度计算,优化更新模型参数。

    基于双分类器加权对抗的无监督部分域适应方法

    公开(公告)号:CN116484218A

    公开(公告)日:2023-07-25

    申请号:CN202310425555.X

    申请日:2023-04-20

    Abstract: 本发明公开了一种基于双分类器加权对抗的无监督部分域适应方法,包括如下步骤:S1、样例加权:对源域的每个样本进行加权操作;S2、计算分类损失:基于标记的源样本计算分类损失,最小化分类损失训练特征提取器和两个分类器,使模型拟合源域的分布;S3、计算预测差异损失:将未标记的目标域样本输入的两个分类器中,通过两个分类器的输出来计算预测差异损失;S4、对抗学习:冻结特征提取器,通过最大化预测差异损失和分类损失来更新两个分类器;再冻结两个分类器,通过最小化预测差异损失来更新特征提取器,重复这一步骤进行对抗学习。本发明兼顾了目标域信息与难分类样本,能够实现更好的领域适应效果。

Patent Agency Ranking