-
公开(公告)号:CN112668502A
公开(公告)日:2021-04-16
申请号:CN202011625617.4
申请日:2020-12-31
Applicant: 华侨大学
Abstract: 本发明涉及一种基于级联匹配的快速再辨识方法与快速再辨识系统,训练阶段构造多级复杂程度递增的级联的深度学习网络,并对各级深度学习网络独立训练,然后各级深度学习网络进行自举微调;测试阶段使用级联深度学习网络逐级对查询图像和注册图像集的图像进行级联匹配,直到历经所有级联深度学习网络,最终得到匹配链表即为基于级联匹配的快速再辨识结果。本发明中,随着深度学习网络级数的增加,对应的深度学习网络所处理的样本组合数量递减。因此,本发明能够有效地实现大规模的行人或车辆再辨识任务的快速执行,有效提升匹配速度,可应用于大规模的行人或车辆再辨识任务的快速执行。
-
公开(公告)号:CN115995065A
公开(公告)日:2023-04-21
申请号:CN202310149452.5
申请日:2023-02-22
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
IPC: G06V20/54 , G06V10/82 , G06N3/08 , G06N3/0464
Abstract: 本发明提供一种基于动态卷积Transformer的车辆再辨识方法;不同于各个局部区域共用卷积核,本发明中各个局部区域共用一个卷积核池,由一个全连接人工神经子网从各个局部区域各自学习得到一组系数,利用各个局部区域对应的系数将卷积核池中的卷积核进行线性融合获得各个局部区域的专用卷积核,用于学习各个局部区域的特征。因此,本发明能够根据各个局部区域自身的表征特性自适应学习相应的卷积核,能够更好学习车辆图像的局部特征,从而有利于提升车辆再辨识性能。
-