-
公开(公告)号:CN116405683A
公开(公告)日:2023-07-07
申请号:CN202310449794.9
申请日:2023-04-24
Applicant: 华侨大学
IPC: H04N19/147 , H04N19/176 , H04N19/149 , H04N19/11 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于3D‑HEVC深度图模式预测的深度图编码方法、装置及可读介质,通过构建基于卷积网络的DMM模式预测模型并进行训练,得到经训练的DMM模式预测模型;将待编码深度图序列划分得到第一级别尺寸下的若干个当前待编码块,将当前待编码块输入经训练的DMM模式预测模型,输出的网络预测值为当前待编码块的编码过程中是否需要将DMM模式加入对应尺寸的全率失真代价计算列表的标签值;采用3D‑HEVC编码器对当前待编码块进行编码,在编码过程中调用网络预测值,并确定当前待编码块在对应尺寸下的最佳模式;以判断是否需要将DMM模式加入对应尺寸的全率失真代价计算列表,可避免直接将DMM模式加入全率失真代价计算列表,导致对DMM模式冗余的率失真计算过程。
-
公开(公告)号:CN116668723A
公开(公告)日:2023-08-29
申请号:CN202310550087.9
申请日:2023-05-16
Applicant: 华侨大学
IPC: H04N19/597 , H04N19/593 , H04N19/124 , H04N19/119 , H04N19/61 , G06T9/00 , G06N3/0464
Abstract: 本发明公开了一种基于卷积神经网络的3D‑HEVC深度图帧内编码单元划分方法及装置,通过构建编码单元划分预测模型并训练,采用3D‑HEVC编码器对当前待编码块进行编码,在编码过程中确定编码单元的当前尺寸和当前编码量化参数;根据编码单元的当前尺寸和/或当前编码量化参数确定在编码过程中采用速度模式或性能模式,在速度模式中,将预测值作为当前待编码块的划分结果;在性能模式中,使用3D‑HEVC编码器预测当前待编码块的划分结果;判断编码单元的当前尺寸是否大于第四尺寸,若是则调整当前待编码块的尺寸缩小一个级别,并重复以上步骤,直至得到当前待编码块的所有划分结果,本方法在保证一定编码质量的前提下,能够显著节省深度图编码所需时间。
-