一种多阶段渐进式图像超分辨率方法

    公开(公告)号:CN114066727B

    公开(公告)日:2024-09-06

    申请号:CN202110858949.5

    申请日:2021-07-28

    Applicant: 华侨大学

    Abstract: 本发明公开了一种多阶段渐进式图像超分辨率方法,包括:使用多尺度特征提取模块提取待重建的图像特征,并引入通道注意力模块,对不同通道特征赋予权重,从而增强重要通道特征的表现能力;采用残差特征融合机制,充分利用图像上下文特征的关联性,得到第一阶段中的重建图像;使用精细化模块,对第一阶段中得到的重建图像进行优化,从而得到更为精细的重建图像;采用损失函数进行训练,进一步提升模型的超分辨率效果。本发明方法有效提高了图像超分辨率重建的效果,在主观视觉和客观评价指标方面都获得了更好的效果。

    一种融合相关滤波和粒子滤波的高精度红外目标跟踪方法

    公开(公告)号:CN113160271B

    公开(公告)日:2023-10-31

    申请号:CN202110276732.3

    申请日:2021-03-15

    Applicant: 华侨大学

    Abstract: 本发明提出了一种融合相关滤波和粒子滤波的高精度红外目标跟踪方法,将Lp范数引入LRST跟踪器,构建跟踪器最小化模型Lp‑LRST;利用DSST跟踪器估计出目标的位置和尺度,同时计算PSR值来衡量跟踪结果的可信度;若PSR大于或等于设定阈值,则根据DSST跟踪器当前帧确定的目标位置和尺度来执行Lp‑LRST跟踪器,否则由Lp‑LRST跟踪器根据上一帧的目标状态来重新确定目标位置;若PSR大于或等于设定阈值,则更新DSST跟踪器的模板,反之,停止更新;当粒子的模板相似度低于设定阈值时,更新Lp‑LRST跟踪器的模板,反之,停止更新;将获得的目标位置和尺度传递给下一帧的DSST跟踪器;重复直到跟踪结束。本发明提供的方法能够实现提升红外目标跟踪的准确性和鲁棒性。

    一种多阶段渐进式图像超分辨率方法

    公开(公告)号:CN114066727A

    公开(公告)日:2022-02-18

    申请号:CN202110858949.5

    申请日:2021-07-28

    Applicant: 华侨大学

    Abstract: 本发明公开了一种多阶段渐进式图像超分辨率方法,包括:使用多尺度特征提取模块提取待重建的图像特征,并引入通道注意力模块,对不同通道特征赋予权重,从而增强重要通道特征的表现能力;采用残差特征融合机制,充分利用图像上下文特征的关联性,得到第一阶段中的重建图像;使用精细化模块,对第一阶段中得到的重建图像进行优化,从而得到更为精细的重建图像;采用损失函数进行训练,进一步提升模型的超分辨率效果。本发明方法有效提高了图像超分辨率重建的效果,在主观视觉和客观评价指标方面都获得了更好的效果。

    一种可靠的局部目标跟踪方法及跟踪器

    公开(公告)号:CN113096157A

    公开(公告)日:2021-07-09

    申请号:CN202110481653.6

    申请日:2021-04-30

    Applicant: 华侨大学

    Abstract: 本发明可靠的局部目标跟踪方法及跟踪器,包括:利用随机分块方法和人工分块方法来划分目标,得到第一类粒子和第二类粒子;结合第一类粒子和第二类粒子来估计目标位置;利用重采样规则来剔除第一类粒子中的不可靠粒子;计算探测分数r来判断第二类粒子是否被遮挡;若目标从全遮挡状态转变为部分遮挡或无遮挡状态,由第二类粒子确定最终的目标位置,否则,由第一类粒子中的可靠粒子来确定;S60,对于第一类粒子,其跟踪器的位置滤波器在每一帧都进行更新,而对于第二类粒子,只有当某个粒子的探测分数r大于设定阈值时,其跟踪器的位置滤波器才进行更新;利用可靠粒子之间的距离来估计目标的宽度与高度变化,得到目标的尺度。

    一种结合SegNet和U-Net的车道线检测方法和装置

    公开(公告)号:CN112149535A

    公开(公告)日:2020-12-29

    申请号:CN202010953936.1

    申请日:2020-09-11

    Applicant: 华侨大学

    Abstract: 本发明提供一种结合SegNet和U‑Net网络的车道线检测方法,包括以下步骤:制作数据集和标签;构建基于SegNet的车道线检测网络;将U‑Net网络的跳跃连接结构加入所述的基于SegNet的车道线检测网络,得到一种结合SegNet和U‑Net的车道线检测网络;使用所述结合SegNet和U‑Net网络的车道线检测网络对待识别的行车场景图像进行检测,得到检测结果。本发明提出车道线检测方法,克服原有SegNet模型提取的特征过于单一的问题,提高车道线检测的精度。

    基于多池优先经验回放的强化学习网络训练方法及装置

    公开(公告)号:CN116796814A

    公开(公告)日:2023-09-22

    申请号:CN202310767100.6

    申请日:2023-06-27

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多池优先经验回放的强化学习网络训练方法及装置,构建基于经验回放池和共享池的多池框架;将每个智能体对应的经验回放池中的样本按照采样概率采样至共享缓冲区中,将共享缓冲区中样本放入共享池中,将每个智能体从共享池中抽取的样本存放在各自的缓冲区中;在共享池中采用K‑means算法进行聚类,得到聚类结果,以对共享池中的样本进行清理;对强化学习网络分阶段进行训练,在不同的阶段智能体分别从其对应的经验回放池或者缓冲区中抽取样本进行学习,对经验回放池和共享池中样本的TD误差进行更新,并根据更新后的TD误差对共享池中的样本进行清理;重复交叉执行以上若干步骤,使智能体在环境异步环境下更好的探索最优策略。

    一种可靠的局部目标跟踪方法及跟踪器

    公开(公告)号:CN113096157B

    公开(公告)日:2023-07-28

    申请号:CN202110481653.6

    申请日:2021-04-30

    Applicant: 华侨大学

    Abstract: 本发明可靠的局部目标跟踪方法及跟踪器,包括:利用随机分块方法和人工分块方法来划分目标,得到第一类粒子和第二类粒子;结合第一类粒子和第二类粒子来估计目标位置;利用重采样规则来剔除第一类粒子中的不可靠粒子;计算探测分数r来判断第二类粒子是否被遮挡;若目标从全遮挡状态转变为部分遮挡或无遮挡状态,由第二类粒子确定最终的目标位置,否则,由第一类粒子中的可靠粒子来确定;S60,对于第一类粒子,其跟踪器的位置滤波器在每一帧都进行更新,而对于第二类粒子,只有当某个粒子的探测分数r大于设定阈值时,其跟踪器的位置滤波器才进行更新;利用可靠粒子之间的距离来估计目标的宽度与高度变化,得到目标的尺度。

    一种融合相关滤波和粒子滤波的高精度红外目标跟踪方法

    公开(公告)号:CN113160271A

    公开(公告)日:2021-07-23

    申请号:CN202110276732.3

    申请日:2021-03-15

    Applicant: 华侨大学

    Abstract: 本发明提出了一种融合相关滤波和粒子滤波的高精度红外目标跟踪方法,将Lp范数引入LRST跟踪器,构建跟踪器最小化模型Lp‑LRST;利用DSST跟踪器估计出目标的位置和尺度,同时计算PSR值来衡量跟踪结果的可信度;若PSR大于或等于设定阈值,则根据DSST跟踪器当前帧确定的目标位置和尺度来执行Lp‑LRST跟踪器,否则由Lp‑LRST跟踪器根据上一帧的目标状态来重新确定目标位置;若PSR大于或等于设定阈值,则更新DSST跟踪器的模板,反之,停止更新;当粒子的模板相似度低于设定阈值时,更新Lp‑LRST跟踪器的模板,反之,停止更新;将获得的目标位置和尺度传递给下一帧的DSST跟踪器;重复直到跟踪结束。本发明提供的方法能够实现提升红外目标跟踪的准确性和鲁棒性。

Patent Agency Ranking