基于生物质热溶萃取物制备超级电容器电极材料的方法

    公开(公告)号:CN108281298A

    公开(公告)日:2018-07-13

    申请号:CN201810113584.1

    申请日:2018-02-05

    Abstract: 本发明属于超级电容器制备相关技术领域,并公开了一种基于生物质热溶萃取物制备超级电容器电极材料的方法,其包括:对生物质原料进行热溶剂萃取分离,获得高分子量萃取产物;将高分子量萃取产物作为原材料,对其进行碳化和活化处理,制备成热化学处理萃取物;将热化学处理萃取物作为原料制备电极活性材料,并获得所需的超级电容器电极。本发明还公开了相应的电极材料产品。通过本发明,能够充分利用高分子量萃取物良好的热塑性,在活化过程中有效增大反应接触面积的优点,提高活化效果,使制备的热化学处理萃取物的孔道结构更加均匀,进而显著提高了制备电极材料时的稳定性和平行性,同时还提供了生物质废弃物的高附加值利用渠道。

    基于生物质热溶萃取物制备超级电容器电极材料的方法

    公开(公告)号:CN108281298B

    公开(公告)日:2019-10-08

    申请号:CN201810113584.1

    申请日:2018-02-05

    Abstract: 本发明属于超级电容器制备相关技术领域,并公开了一种基于生物质热溶萃取物制备超级电容器电极材料的方法,其包括:对生物质原料进行热溶剂萃取分离,获得高分子量萃取产物;将高分子量萃取产物作为原材料,对其进行碳化和活化处理,制备成热化学处理萃取物;将热化学处理萃取物作为原料制备电极活性材料,并获得所需的超级电容器电极。本发明还公开了相应的电极材料产品。通过本发明,能够充分利用高分子量萃取物良好的热塑性,在活化过程中有效增大反应接触面积的优点,提高活化效果,使制备的热化学处理萃取物的孔道结构更加均匀,进而显著提高了制备电极材料时的稳定性和平行性,同时还提供了生物质废弃物的高附加值利用渠道。

    一种低阶煤热溶剂萃取提质方法

    公开(公告)号:CN107510955B

    公开(公告)日:2019-05-14

    申请号:CN201710769336.8

    申请日:2017-08-31

    Abstract: 本发明属于低阶煤提质方法领域,并公开了一种低阶煤热溶剂萃取提质方法,首先对低阶煤进行热溶剂萃取提质,获得高分子量萃取物、低分子量萃取物溶液;然后以低分子量萃取物溶液作为下一次萃取实验的有机溶剂进行循环萃取实验,并以所得的高分子量萃取物为目标产物,如此重复以上步骤,可进行多次循环萃取实验。并均以高分子萃取物为目标产物。通过本发明,可以避免溶剂与低分子量萃取物的分离所消耗的巨大能量,简化工艺,并最终实现无需外加溶剂的低阶煤热溶剂萃取提质。并且,可以同时提高高分子量萃取物的收率和品质,提高了低阶煤热溶萃取技术的经济性。本发明产物附加值高,具有较好的经济效益和应用前景。

    一种煤基活性碳纤维、其制备方法和应用

    公开(公告)号:CN110184685A

    公开(公告)日:2019-08-30

    申请号:CN201910431614.8

    申请日:2019-05-23

    Abstract: 本发明属于煤化工及碳材料制备技术领域,更具体地,涉及一种煤基活性碳纤维、其制备方法和应用。将煤热溶萃取物与能够进行静电纺丝的聚合物充分混合,并溶解于有机溶剂中制成静电纺丝液;所述静电纺丝液经静电纺丝,制成纳米纺丝纤维后经过预氧化,得到预氧化后的纳米纺丝纤维;对所述预氧化后的纳米纺丝纤维进行碳化和气体活化,得到所述煤基活性碳纤维。活化纳米碳纤维作为一种柔性材料,自身具有高比表面积,并可直接用于超级电容器电极材料。本发明充分利用低阶煤热溶萃取处理过程中的高分子量萃取物制备活性碳纤维,实现了热溶萃取技术中萃取产物的综合利用,同时为低阶煤的高质化利用提供了一种新途径。

    生物质萃取物与聚丙烯腈共纺制备碳纤维的方法及碳纤维

    公开(公告)号:CN108277558A

    公开(公告)日:2018-07-13

    申请号:CN201711453452.5

    申请日:2017-12-28

    Abstract: 本发明公开了一种生物质萃取物与聚丙烯腈共纺制备碳纤维的方法及碳纤维。该方法利用有机溶剂萃取生物质原料,获得常温下可溶的低分子量萃取物,接着利用高分子量萃取物、聚丙烯腈及纺丝溶剂配制纺丝液,水浴加热并搅拌,然后静电纺丝;最后,将纺出的丝进行氧化及高温碳化获得碳纤维。本发明提供了一种碳纤维制备路径,其原料成本较传统碳纤维制备工艺原料低廉且可部分替代成本较高的聚丙烯腈前驱体,制备工艺相对较简单,环境污染相对较小。并且,本发明所得碳纤维品质良好,拥有发达的孔隙结构,比表面积最高可达836.82m2/g,比体积最高可达188.41cm3/g,具有很好的经济效益和应用前景。

    生物质萃取物与聚丙烯腈共纺制备碳纤维的方法及碳纤维

    公开(公告)号:CN108277558B

    公开(公告)日:2020-10-30

    申请号:CN201711453452.5

    申请日:2017-12-28

    Abstract: 本发明公开了一种生物质萃取物与聚丙烯腈共纺制备碳纤维的方法及碳纤维。该方法利用有机溶剂萃取生物质原料,获得常温下可溶的低分子量萃取物,接着利用高分子量萃取物、聚丙烯腈及纺丝溶剂配制纺丝液,水浴加热并搅拌,然后静电纺丝;最后,将纺出的丝进行氧化及高温碳化获得碳纤维。本发明提供了一种碳纤维制备路径,其原料成本较传统碳纤维制备工艺原料低廉且可部分替代成本较高的聚丙烯腈前驱体,制备工艺相对较简单,环境污染相对较小。并且,本发明所得碳纤维品质良好,拥有发达的孔隙结构,比表面积最高可达836.82m2/g,比体积最高可达188.41cm3/g,具有很好的经济效益和应用前景。

    一种煤基活性碳纤维、其制备方法和应用

    公开(公告)号:CN110184685B

    公开(公告)日:2020-07-10

    申请号:CN201910431614.8

    申请日:2019-05-23

    Abstract: 本发明属于煤化工及碳材料制备技术领域,更具体地,涉及一种煤基活性碳纤维、其制备方法和应用。将煤热溶萃取物与能够进行静电纺丝的聚合物充分混合,并溶解于有机溶剂中制成静电纺丝液;所述静电纺丝液经静电纺丝,制成纳米纺丝纤维后经过预氧化,得到预氧化后的纳米纺丝纤维;对所述预氧化后的纳米纺丝纤维进行碳化和气体活化,得到所述煤基活性碳纤维。活化纳米碳纤维作为一种柔性材料,自身具有高比表面积,并可直接用于超级电容器电极材料。本发明充分利用低阶煤热溶萃取处理过程中的高分子量萃取物制备活性碳纤维,实现了热溶萃取技术中萃取产物的综合利用,同时为低阶煤的高质化利用提供了一种新途径。

Patent Agency Ranking