-
公开(公告)号:CN115115654A
公开(公告)日:2022-09-27
申请号:CN202210670321.7
申请日:2022-06-14
Applicant: 北京空间飞行器总体设计部 , 南京理工大学
Abstract: 本发明公开了一种基于显著性和近邻形状查询的物体图像分割方法,步骤如下:S1、在CPU中输入图像I,进行M个尺度的过分割;S2、针对步骤S1划分的每个尺度的区域集合,基于区域上下文和封闭性先验,计算显著性,并将多个尺度的结果进行加权融合,得到图像的显著性图;S3、将得到的显著性图进行划分,通过设置三级阈值T1、T2、T3;S4、根据显著性特征图的相似性查找近邻分割形状,计算得到形状概率图;S5、将形状概率图和颜色概率图融合,通过优化求解Graph Cut问题,得二值分割结果。本发明采用上述的一种基于显著性和近邻形状查询的物体图像分割方法,使形状模型更好地拟合实例形状,具有更优的物体分割性能。
-
公开(公告)号:CN115115654B
公开(公告)日:2023-09-08
申请号:CN202210670321.7
申请日:2022-06-14
Applicant: 北京空间飞行器总体设计部 , 南京理工大学
Abstract: 本发明公开了一种基于显著性和近邻形状查询的物体图像分割方法,步骤如下:S1、在CPU中输入图像I,进行M个尺度的过分割;S2、针对步骤S1划分的每个尺度的区域集合,基于区域上下文和封闭性先验,计算显著性,并将多个尺度的结果进行加权融合,得到图像的显著性图;S3、将得到的显著性图进行划分,通过设置三级阈值T1、T2、T3;S4、根据显著性特征图的相似性查找近邻分割形状,计算得到形状概率图;S5、将形状概率图和颜色概率图融合,通过优化求解Graph Cut问题,得二值分割结果。本发明采用上述的一种基于显著性和近邻形状查询的物体图像分割方法,使形状模型更好地拟合实例形状,具有更优的物体分割性能。
-
公开(公告)号:CN115359350A
公开(公告)日:2022-11-18
申请号:CN202210895602.2
申请日:2022-07-28
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明提出了一种基于图模型的群目标队形变化识别方法,能够描述群目标队形变化数据之间的时空相关性和相互依赖性,并且提升群目标队形变化的识别准确率。本发明面向群目标队形变化序列,构建基于时空轨迹数据的图模型,以描述群目标队形变化数据之间的时空相关性和相互依赖性,具有较强的抗形变能力;并通过建立动态图的递归卷积网络模型,解决了在时序运动和空间结构联合建模的问题,提升了群目标队形变化的识别准确率。
-
-