-
公开(公告)号:CN102515767B
公开(公告)日:2013-11-20
申请号:CN201110389741.X
申请日:2011-11-30
Applicant: 北京科技大学
IPC: C04B35/565 , C04B35/582 , C04B35/626
Abstract: 一种制备SiC-AlN固溶体陶瓷粉末的方法,属于陶瓷粉末制备领域。通过改善原料混合方法,使粒度更小的亚微粒子直接接触反应,提高前驱物的反应活性,有利于在较低温度条件下制备出高纯度、细粒度、均匀性及反应活性好的SiC-AlN固溶体陶瓷亚微米粉末;铝源为硝酸铝;硅源为硅溶胶;碳源为葡萄糖;添加剂为尿素,聚丙烯酰胺,硝酸。铝源和硅源摩尔比Si:Al=1:(0.2~5);铝源、硅源和碳源摩尔比(Al+Si):C=1:(5~16);+5价的氮元素与–3价的氮元素摩尔比N+5:N-3=1:(0.1~10);聚丙烯酰胺与硅溶胶质量比(0.5~2):1。本发明原材料来源广泛,价格低廉,生产成本低,制备的SiC-AlN固溶体陶瓷亚微米粉末性能稳定,生产工艺简单,可实现大批量生产。
-
公开(公告)号:CN103145129A
公开(公告)日:2013-06-12
申请号:CN201310104789.0
申请日:2013-03-28
Applicant: 北京科技大学
Abstract: 一种制备碳化硅纳米纤维的方法。该方法通过改进原料混合方法和原料组成,能够得到形貌和尺寸可控以及高反应活性的均匀混合前驱物,前驱物在较低温度条件下通过碳热还原反应能够合成高纯度、形貌和尺寸可控和分散性较好的碳化硅纳米纤维;硅源为硅溶胶;碳源为葡萄糖;添加剂为尿素、PAM、硝酸。硅溶胶和葡萄糖的摩尔比为Si:C=1:(4~12)的配比;硝酸(N)和尿素(U)按照摩尔比N:U=1:(0.5~2)的配比;PAM与硅溶胶按照质量比(0.5~3):1的配比。前驱物中硅源和碳源粒度细小、混合均匀,反应活性好,能降低碳热还原反应温度,提高反应速率,制备出分散性能良好的碳化硅纳米纤维;原材料来源广泛,价格低廉,生产成本低,产率高。
-
公开(公告)号:CN103785856B
公开(公告)日:2015-10-28
申请号:CN201410067105.9
申请日:2014-02-26
Applicant: 北京科技大学
Abstract: 一种铜纳米颗粒负载碳球复合材料及其制备方法,属于复合粉末制备技术领域。铜纳米粒子负载于碳球表面,铜纳米粒子无有机物包覆,表面洁净,碳球和铜纳米粒子尺寸可调,碳球尺寸在100纳米到100微米之间,铜纳米粒子尺寸在1纳米到30纳米之间。制备上是以铜盐、碳源、去离子水为原料,铜盐和碳源的摩尔比例为0.01-100。将混合液体放入水热反应釜,于80-250℃温度下保温2-50小时;取出反应釜,冷却至室温,倒出沉淀,清洗,在干燥箱进行干燥;最后,粉末放入氧化铝烧舟,保护气氛下管式炉中进行煅烧处理,保温温度300-900℃,保温时间0.5-10小时,自然冷却到室温,得到产物。本发明优点在于避免使用有机表面活性剂,快速得到具有洁净表面的铜纳米颗粒负载于碳球的复合材料。
-
公开(公告)号:CN104383938A
公开(公告)日:2015-03-04
申请号:CN201410498720.5
申请日:2014-09-25
Applicant: 北京科技大学
IPC: B01J23/847 , G01N27/327
Abstract: 一种葡萄糖氧化电催化剂及其制备方法,催化剂材料为纯相的Cu4V2.15O9.38,为单晶棒状形貌或者为单晶棒组装而成的超结构,单晶棒尺寸可调,直径在10纳米到500纳米之间,长度在50纳米到50微米之间。由铜盐、钒源、有机胺和去离子水组成混合液中,铜盐和钒源的摩尔比例为0.1-10;将混合液体放入水热反应釜,于80-250℃温度下保温2-50小时;取出反应釜,冷却至室温后,打开容器,倒出沉淀,洗涤,在干燥箱中进行干燥;得到Cu4V2.15O9.38粉末。利用Cu4V2.15O9.38制备出Cu4V2.15O9.38修饰的玻璃碳电极,可作为一种新型的无酶型葡萄糖传感器,通过电信号的变化成功检测葡萄糖的浓度。本发明方法制备出Cu4V2.15O9.38纳米粉末,具有优异的葡萄糖氧化的电催化性能。且该方法成本低,对环境友好,纯度较高、易于推广。
-
公开(公告)号:CN103785856A
公开(公告)日:2014-05-14
申请号:CN201410067105.9
申请日:2014-02-26
Applicant: 北京科技大学
Abstract: 一种铜纳米颗粒负载碳球复合材料及其制备方法,属于复合粉末制备技术领域。铜纳米粒子负载于碳球表面,铜纳米粒子无有机物包覆,表面洁净,碳球和铜纳米粒子尺寸可调,碳球尺寸在100纳米到100微米之间,铜纳米粒子尺寸在1纳米到30纳米之间。制备上是以铜盐、碳源、去离子水为原料,铜盐和碳源的摩尔比例为0.01-100。将混合液体放入水热反应釜,于80-250℃温度下保温2-50小时;取出反应釜,冷却至室温,倒出沉淀,清洗,在干燥箱进行干燥;最后,粉末放入氧化铝烧舟,保护气氛下管式炉中进行煅烧处理,保温温度300-900℃,保温时间0.5-10小时,自然冷却到室温,得到产物。本发明优点在于避免使用有机表面活性剂,快速得到具有洁净表面的铜纳米颗粒负载于碳球的复合材料。
-
公开(公告)号:CN101973534A
公开(公告)日:2011-02-16
申请号:CN201010527704.6
申请日:2010-11-02
Applicant: 北京科技大学
IPC: C01B21/072 , C04B35/581
Abstract: 一种制备氮化铝陶瓷粉末的方法,属于陶瓷粉末制备领域。铝源为硝酸铝或氯化铝或硫酸铝;碳源为碳黑;添加剂为尿素、硝酸铵、硝酸。首先将碳黑均匀分散于一定量的水中形成悬浮液,然后将所述铝源及添加剂溶解分散于碳黑的悬浮液中得到混合溶液,将混合溶液加热发生反应后得到前驱物。前驱物在流动氮气或氨气气氛中碳热还原,碳热还原反应产物在500~800℃的温度下氧化除碳30~600min,得到氮化铝粉末。本发明前驱物中铝源和碳源粒度细小、混合均匀,反应活性好,能降低碳热还原反应温度,提高反应速率,制备出分散性能良好的纳米级氮化铝陶瓷粉末;且原材料来源广泛,价格低廉,生产成本低,制备的氮化铝纳米粉性能稳定,生产工艺简单,可实现大批量生产。
-
公开(公告)号:CN103204480B
公开(公告)日:2016-06-15
申请号:CN201310153016.1
申请日:2013-04-27
Applicant: 北京科技大学
IPC: C01B21/06 , C04B35/626 , C04B35/58 , B82Y30/00
Abstract: 本发明属于陶瓷粉末制备技术领域,具体涉及一种生产纳米氮化铬粉末的方法。工艺过程为:(1)将硝酸铬、甘氨酸或甘氨酸和葡萄糖按照一定比例溶于蒸馏水中;(2)加热并搅拌,溶液挥发、浓缩、冒泡,得到前驱体粉末;(3)将前驱体粉末或经过处理的粉末于600-1000℃在炉中通氨气反应0.5-20小时,氨气流量为0.25-5L/min。本发明制备工艺简单,生产周期短,易于产业化生产,得到的氮化铬粉末分散性较好。
-
公开(公告)号:CN103204480A
公开(公告)日:2013-07-17
申请号:CN201310153016.1
申请日:2013-04-27
Applicant: 北京科技大学
IPC: C01B21/06 , C04B35/626 , C04B35/58 , B82Y30/00
Abstract: 本发明属于陶瓷粉末制备技术领域,具体涉及一种生产纳米氮化铬粉末的方法。工艺过程为:(1)将硝酸铬、甘氨酸或甘氨酸和葡萄糖按照一定比例溶于蒸馏水中;(2)加热并搅拌,溶液挥发、浓缩、冒泡,得到前驱体粉末;(3)将前驱体粉末或经过处理的粉末于600-1000℃在炉中通氨气反应0.5-20小时,氨气流量为0.25-5L/min。本发明制备工艺简单,生产周期短,易于产业化生产,得到的氮化铬粉末分散性较好。
-
公开(公告)号:CN102515767A
公开(公告)日:2012-06-27
申请号:CN201110389741.X
申请日:2011-11-30
Applicant: 北京科技大学
IPC: C04B35/565 , C04B35/582 , C04B35/626
Abstract: 一种制备SiC-AlN固溶体陶瓷粉末的方法,属于陶瓷粉末制备领域。通过改善原料混合方法,使粒度更小的亚微粒子直接接触反应,提高前驱物的反应活性,有利于在较低温度条件下制备出高纯度、细粒度、均匀性及反应活性好的SiC-AlN固溶体陶瓷亚微米粉末;铝源为硝酸铝;硅源为硅溶胶;碳源为葡萄糖;添加剂为尿素,聚丙烯酰胺,硝酸。铝源和硅源摩尔比Si∶Al=1∶(0.2~5);铝源、硅源和碳源摩尔比(Al+Si)∶C=1∶(5~16);+5价的氮元素与–3价的氮元素摩尔比N+5∶N-3=1∶(0.1~10);聚丙烯酰胺与硅溶胶质量比(0.5~2)∶1。本发明原材料来源广泛,价格低廉,生产成本低,制备的SiC-AlN固溶体陶瓷亚微米粉末性能稳定,生产工艺简单,可实现大批量生产。
-
公开(公告)号:CN101973533A
公开(公告)日:2011-02-16
申请号:CN201010527703.1
申请日:2010-11-02
Applicant: 北京科技大学
IPC: C01B21/072 , C04B35/581
Abstract: 一种共沉淀-碳热还原制备氮化铝粉末的方法,属于陶瓷粉末制备领域。铝源为硫酸铝氨,碳源为碳黑,沉淀剂为碳酸氢氨。铝源和碳源按照摩尔比配比;沉淀剂与铝源按照摩尔比配比。首先将碳酸氢氨和硫酸铝氨分别溶解于适量去离子水中,然后将碳黑加入硫酸铝氨水溶液中搅拌混匀,得到硫酸铝氨与碳黑混合溶液;将其与碳酸氢氨溶液混合搅拌均匀,得到铝源和碳黑的均匀沉淀,制得的铝源与碳黑的沉淀经过滤布排干水分,烘干得到前驱物。将前驱物在一定的条件下反应,反应产物经后续脱碳处理得到氮化铝粉末。本发明有利于在较低反应温度条件下合成出高纯度、细粒度的纳米级氮化铝陶瓷粉末;设备简单、工艺可操作性及可靠性强,生产成本低,适合工业化生产。
-
-
-
-
-
-
-
-
-