一种被动型氢原子频标小型磁控管微波腔

    公开(公告)号:CN119965065A

    公开(公告)日:2025-05-09

    申请号:CN202411910996.X

    申请日:2024-12-24

    Abstract: 本发明涉及小型磁控管微波腔技术领域,公开一种被动型氢原子频标小型磁控管微波腔。该被动型氢原子频标小型磁控管微波腔包括腔筒和四个极片,腔筒内形成有密闭微波谐振腔,腔筒的侧面两边分别设置有一个耦合环,两个耦合环分别用于微波信号的输入和输出,腔筒的外直径为111mm,腔筒的内直径为105mm,高度为188.5mm;极片呈弧形结构,四个极片间隔环设在密闭微波谐振腔中,每个极片背离多个极片环设中心的一面凸设有连接柱,连接柱连接于腔筒侧壁,四个极片围成的环形内径为61.6mm,外径为67.4mm,极片的高度为145mm,每相邻两个极片之间的间距为3.8mm。质量较轻,体积较小,同时满足被动型氢原子频标的氢原子跃迁的磁场环境需求。

    一种新型氢原子频标微波腔频率伺服系统

    公开(公告)号:CN118100925A

    公开(公告)日:2024-05-28

    申请号:CN202311865400.4

    申请日:2023-12-29

    Abstract: 本发明公开了一种新型氢原子频标微波腔频率伺服系统,用以降低系统内部1.4GHz信号的干扰,使环路中信号频谱纯净、环路构成简单,实现整机频率稳定度和相位噪声水平较高。所述系统,包括:物理部分微波腔、锁相倍频电路、晶振环路、输出电路、腔伺服环路、频率合成电路;所述物理部分微波腔的输出信号经下混频后功分为两路,一路传输至晶振环路,另一路与所述频率合成电路的输出信号混频后再传输至腔伺服环路;所述腔伺服环路对输入信号进行检波后输出直流控制信号至物理部分微波腔的变容二级管。

    一种镍提纯器和氢原子频标

    公开(公告)号:CN108771944B

    公开(公告)日:2024-03-19

    申请号:CN201810864355.3

    申请日:2018-08-01

    Abstract: 本发明公开一种镍提纯器和氢原子频标。该镍提纯器包括:石英管;位于所述石英管内的螺旋镍管;对称套设于所述石英管外的两段陶瓷管;所述两段陶瓷管之间相隔一段距离形成间隙;横跨所述间隙连接于两段陶瓷管相互靠近的一端外周的通氢转接头;所述通氢转接头上连接有通氢管道;分别对称连接于所述两段陶瓷管另一端的两个通氢头;以及分别对称连接于两个通氢头上的两个单向焊片。该镍提纯器采用轴对称结构设计,将原接地端通过两个陶瓷实现对两个电极的绝缘隔离,从根本上避免了镍提纯器加电控制氢流量时负端电流流经氢原子频标的物理部分,彻底解决了地电流可能导致氢原子频标磁敏感度性能下降的潜在问题,提高了氢原子频标整机性能的可靠性。

    一种用于稳定积分球冷原子钟微波腔频率的装置和方法

    公开(公告)号:CN111884653B

    公开(公告)日:2022-06-24

    申请号:CN202010511666.9

    申请日:2020-06-08

    Abstract: 本发明公开一种用于稳定积分球冷原子钟微波腔频率的装置和方法,本发明涉及冷原子频率微波腔频率控制技术领域,以解决现有的积分球冷原子钟微波腔频率控制方案中,过度依赖温控水平、抗干扰能力差、响应速度慢、频率控制精度低等问题。其中装置包括:本振控制回路,用于向微波腔内输入倍频至原子跃迁频率的射频信号,生成并接收钟信号;腔频控制回路,用于向微波腔内输入调制信号,对微波腔腔频进行周期调制;接收钟信号,根据调制信号和钟信号生成反馈信号,对腔频调制过程中的变化量进行补偿,实现对腔频锁定。上述方法及装置用于周期性通过本振控制回路锁定本地振荡器的基础上,通过腔频控制回路实现微波腔频率的稳定。

    一种用于稳定积分球冷原子钟微波腔频率的装置和方法

    公开(公告)号:CN111884653A

    公开(公告)日:2020-11-03

    申请号:CN202010511666.9

    申请日:2020-06-08

    Abstract: 本发明公开一种用于稳定积分球冷原子钟微波腔频率的装置和方法,本发明涉及冷原子频率微波腔频率控制技术领域,以解决现有的积分球冷原子钟微波腔频率控制方案中,过度依赖温控水平、抗干扰能力差、响应速度慢、频率控制精度低等问题。其中装置包括:本振控制回路,用于向微波腔内输入倍频至原子跃迁频率的射频信号,生成并接收钟信号;腔频控制回路,用于向微波腔内输入调制信号,对微波腔腔频进行周期调制;接收钟信号,根据调制信号和钟信号生成反馈信号,对腔频调制过程中的变化量进行补偿,实现对腔频锁定。上述方法及装置用于周期性通过本振控制回路锁定本地振荡器的基础上,通过腔频控制回路实现微波腔频率的稳定。

    一种用于氢频标的高效束光学系统

    公开(公告)号:CN102624386A

    公开(公告)日:2012-08-01

    申请号:CN201210050610.3

    申请日:2012-02-29

    Abstract: 本发明公开了一种用于氢频标的高效束光学系统,该系统包括磁屏蔽层(1)、微波腔(2)、储存泡(3)、导流管(4)、真空腔(5)、选态器(6)、准直器(7)和氢原子源(8);磁屏蔽层(1)内设有微波腔(2),微波腔(2)内设有储存泡(3),导流管(4)穿过微波腔(2)和磁屏蔽层(1)将储存泡(3)与真空腔(5)导通,真空腔(5)内设有选态器(6),选态器(6)的一端固定在真空腔(5)上,其另一端为自由端,准直器(7)置于选态器(6)与氢原子源(8)之间,氢原子源(8)的出口、准直器(7)的中心、选态器(6)的中心、导流管(4)和储存泡(3)的入口在一条直线上。本发明提供的高效束光学系统结构简单,可靠性好,选态效率高,能够将氢原子的量子跃迁增益提高50%。

    小抽速离子泵寿命考核装置及寿命考核方法

    公开(公告)号:CN114483608B

    公开(公告)日:2024-07-05

    申请号:CN202111644667.1

    申请日:2021-12-29

    Abstract: 本发明公开了一种小抽速离子泵寿命考核装置及寿命考核方法。该小抽速离子泵寿命考核装置氢源罐、提纯器、三通、被测离子泵、真空阀门、分子泵组以及数据处理器。氢源罐上设置有开关阀;提纯器通过连接管与开关阀连接;三通包括第一端口、第二端口以及第三端口,第一端口与提纯器密封连接;被测离子泵与第二端口密封连接,被测离子泵通过高压电源加电;真空阀门与第三端口密封连接;分子泵组与真空阀门连接;数据处理器用于对被测离子泵高压电源离子流数据进行采集和处理。本发明的小抽速离子泵寿命考核装置,可以客观、真实、有效的考核被测离子泵在特定气体负载下的使用寿命,能够提高氢原子频标整机可靠性与寿命评估的精度。

    一种氢原子频标储存泡泡口真空密封装置和真空密封方法

    公开(公告)号:CN110307334B

    公开(公告)日:2024-04-30

    申请号:CN201910588352.6

    申请日:2019-07-02

    Abstract: 本申请公开了一种氢原子频标储存泡泡口真空密封装置和真空密封方法,所述氢原子频标储存泡泡口真空密封装置包括套设在纵向管状的储存泡泡口上部外的铜螺母,储存泡泡口和铜螺母之间设置有纵向管状的胶层,铜螺母的下面依次设置有套设在储存泡泡口外的环形的波形弹垫、第一钛环、聚四氟乙烯环、第二钛环和铟丝圈,储存泡泡口的下端设置有环形的聚四氟乙烯帽,铜螺母下部外、及波形弹垫、第一钛环、聚四氟乙烯环、第二钛环、铟丝圈和聚四氟乙烯帽外均套设有纵向管状的钛联接件;其能避免氢原子频标在装配调试甚至后期使用过程中在泡口真空密封处发生微漏,提高密封可靠性,以保障氢原子频标能够长期可靠运行。

    一种氢原子频标电离源天线装置及其使用方法

    公开(公告)号:CN112117521A

    公开(公告)日:2020-12-22

    申请号:CN202010836435.5

    申请日:2020-08-19

    Abstract: 本发明提供一种氢原子频标电离源天线装置及其使用方法,所述天线装置包括:盘绕天线、振荡电路以及天线固定基座;所述盘绕天线包括螺旋部和与所述螺旋部暴露在外侧的一端连接的直线部,所述直线部与所述振荡电路耦接;所述天线固定基座与所述螺旋部至少接触设置,并且所述天线固定基座通过导热材料形成,本发明提供的天线装置,不仅能够在剧烈的振动环境下正常平稳运行,大大增强天线装置的抗震性,而且天线固定基座采用导热材料,将使用天线时产生的热量通过天线固定基座传递至壳体上,起到散热快、有效改善天线内部温度的作用,对提高氢原子频标适应环境能力作出突出的贡献,从而为氢原子频标高性能长寿命提供新的技术基础。

    一种氢原子频标真空维持装置

    公开(公告)号:CN110159508A

    公开(公告)日:2019-08-23

    申请号:CN201910470554.0

    申请日:2019-05-31

    Abstract: 本发明提供的一种氢原子频标的真空维持装置,一方面,装置的重量远低于溅射离子泵的重量,氢原子频标在工作过程中要源源不断的产生大量的氢气,传统氢原子频标采用溅射离子泵来吸收这些氢气,因为泵的体积和重量越大,吸收的氢气总量就越大,产品的使用寿命就越长,所以传统氢原子频标的溅射离子泵重达十几公斤以上,而吸气剂的吸氢容量很大,在吸收相同氢气的条件下,可以极大减轻重量,该新型装置的重量仅为2~3kg。另一方面,溅射离子泵是在高压,磁场的条件下工作,工作一段时间后会不定期出现打火现象,进而会影响整机的指标,本装置是通过物理吸附氢气的,没有电场和磁场的影响,所以能够平稳运行,没有类似打火现象,有利于整机指标的优化。

Patent Agency Ranking