一种GPU处理器上的K-NN的高性能并行实现装置

    公开(公告)号:CN112380003A

    公开(公告)日:2021-02-19

    申请号:CN202011203928.1

    申请日:2020-11-02

    Applicant: 北京大学

    Abstract: 本发明提供了一种GPU处理器上的K‑NN的高性能并行实现装置,用于提高在GPU处理器上分类的并行加速实现。本发明装置包括:数据读入模块将应用场景中的训练数据和测试数据存成矩阵形式;样本距离计算模块计算每个测试样本与所有训练样本的距离;Top‑K选择模块利用预训练好的决策树模型判断执行粒度,包括线程级别优化、线程束级别优化、线程块级别优化、多线程块级别优化以及基于基数排序优化,选取前k个元素;标签选择模块为测试样本设置类别标签。本发明使用基于分治法的Top‑K并行框架,大大减少不必要的操作,能更充分的利用硬件资源,达到在GPU处理器上提高K‑NN并行效率、实现时间性能加速的目的。

    一种GPU处理器上的K-NN的高性能并行实现装置

    公开(公告)号:CN112380003B

    公开(公告)日:2021-09-17

    申请号:CN202011203928.1

    申请日:2020-11-02

    Applicant: 北京大学

    Abstract: 本发明提供了一种GPU处理器上的K‑NN的高性能并行实现装置,用于提高在GPU处理器上分类的并行加速实现。本发明装置包括:数据读入模块将应用场景中的训练数据和测试数据存成矩阵形式;样本距离计算模块计算每个测试样本与所有训练样本的距离;Top‑K选择模块利用预训练好的决策树模型判断执行粒度,包括线程级别优化、线程束级别优化、线程块级别优化、多线程块级别优化以及基于基数排序优化,选取前k个元素;标签选择模块为测试样本设置类别标签。本发明使用基于分治法的Top‑K并行框架,大大减少不必要的操作,能更充分的利用硬件资源,达到在GPU处理器上提高K‑NN并行效率、实现时间性能加速的目的。

Patent Agency Ranking