一种基于结构光照明的荧光偶极子定向方法

    公开(公告)号:CN108038824B

    公开(公告)日:2020-07-03

    申请号:CN201711306263.5

    申请日:2017-12-11

    Applicant: 北京大学

    Abstract: 本发明涉及一种基于结构光照明的荧光偶极子定向方法,其特征在于,包括以下内容:步骤1)采用结构光显微系统获取具有偏振特性的荧光样本的原始图像和调制信息,并得到不同空间角度所对应的空间频域分量,其中,原始图像是指经结构光显微系统的相机传感器采集到的荧光样本图像,调制信息是指结构光显微系统的调制强度、相位和空间角度;步骤2)将所有空间频域分量进行空间维度频域拼接得到荧光样本的二维超分辨率空域图像;且将所有空间频域分量的角度维度频域拓展得到荧光样本的偏振角度信息;步骤3)将荧光样本的二维超分辨率空域图像和偏振角度信息进行匹配得到超分辨率荧光偶极子定向结果。

    基于偏振结构光调制的多维层析荧光显微成像系统及方法

    公开(公告)号:CN111897118A

    公开(公告)日:2020-11-06

    申请号:CN202010596262.4

    申请日:2020-06-28

    Applicant: 北京大学

    Abstract: 本发明公开了一种基于偏振结构光调制的多维层析荧光显微成像系统及方法。本发明对每个偏振调制方向的照明,都采集两张相位互补的正弦结构光照明图案,通过这两张正弦结构光照明图案的平均来获取均匀光照明图案,再将该均匀光照明图案与其中一张正弦结构光照明图案结合并利用HiLo算法即可求解出光学层析图像;只需要对这三张结构光图案平均同样可以得到均匀光照明图案,再与其中一张结构光照明图案结合即可利用HiLo算法求解出光学层析图案;本发明采取了探测端分光同时采集的方法,不需要增加额外的采集时间;本发明成像速度、较少光漂白等方面具有较大的优势。

    一种直接结构光照明超分辨显微重建方法

    公开(公告)号:CN111458317B

    公开(公告)日:2021-04-30

    申请号:CN202010396335.5

    申请日:2020-05-12

    Applicant: 北京大学

    Abstract: 本发明公开了一种直接结构光照明超分辨显微重建算法。与传统的SIM和ISM不同,本发明的dSIM的超分辨显微重建算法,首先通过小波提取时间域调制信号,将非相干信号转化成相干信号,再计算每个像素位置上的积累量,利用不同空间位置信号之间的相关性产生超分辨图像;dSIM的自相关算法对重建参数的误差不敏感,dSIM绕过了SIM图像重建中复杂的频域操作,也避免了每步频域操作中的参数误差带来的伪影;同时dSIM保留了SIM成像的优点,具有样本制作流程简单、空间分辨率提高两倍、时间分辨率高、活细胞成像、多色成像等优点;dSIM算法的适应性较强,能够利用实验室SIM、非线性SIM成像系统或商用系统进行实验。

    一种基于结构光照明的荧光偶极子定向方法

    公开(公告)号:CN108038824A

    公开(公告)日:2018-05-15

    申请号:CN201711306263.5

    申请日:2017-12-11

    Applicant: 北京大学

    Abstract: 本发明涉及一种基于结构光照明的荧光偶极子定向方法,其特征在于,包括以下内容:步骤1)采用结构光显微系统获取具有偏振特性的荧光样本的原始图像和调制信息,并得到不同空间角度所对应的空间频域分量,其中,原始图像是指经结构光显微系统的相机传感器采集到的荧光样本图像,调制信息是指结构光显微系统的调制强度、相位和空间角度;步骤2)将所有空间频域分量进行空间维度频域拼接得到荧光样本的二维超分辨率空域图像;且将所有空间频域分量的角度维度频域拓展得到荧光样本的偏振角度信息;步骤3)将荧光样本的二维超分辨率空域图像和偏振角度信息进行匹配得到超分辨率荧光偶极子定向结果。

    一种直接结构光照明超分辨显微重建方法

    公开(公告)号:CN111458317A

    公开(公告)日:2020-07-28

    申请号:CN202010396335.5

    申请日:2020-05-12

    Applicant: 北京大学

    Abstract: 本发明公开了一种直接结构光照明超分辨显微重建算法。与传统的SIM和ISM不同,本发明的dSIM的超分辨显微重建算法,首先通过小波提取时间域调制信号,将非相干信号转化成相干信号,再计算每个像素位置上的积累量,利用不同空间位置信号之间的相关性产生超分辨图像;dSIM的自相关算法对重建参数的误差不敏感,dSIM绕过了SIM图像重建中复杂的频域操作,也避免了每步频域操作中的参数误差带来的伪影;同时dSIM保留了SIM成像的优点,具有样本制作流程简单、空间分辨率提高两倍、时间分辨率高、活细胞成像、多色成像等优点;dSIM算法的适应性较强,能够利用实验室SIM、非线性SIM成像系统或商用系统进行实验。

Patent Agency Ranking